Derivación de funciones hiperbólicas

Proporcionamos ejercicios sobre derivación de funciones hiperbólicas.

RESUMEN TEÓRICO
    Recordamos las definiciones de las funciones hiperbólicas y sus inversas respecto del producto.
  • Seno hiperbólico: $ \operatorname{senh} x= \dfrac {e^{x} – e^{-x}} {2}.$
  • Coseno hiperbólico: $\cosh x = \dfrac {e^{x} + e^{-x}} {2}.$
  • Tangente hiperbólica: $\tanh x = \dfrac {\operatorname{senh} x} {\cosh x}.$
  • Cosecante hiperbólica: $\operatorname{csch} x = \dfrac {1} {\operatorname{senh} x }.$
  • Secante hiperbólica: $\operatorname{sech} x = \dfrac {1} {\cosh x}.$
  • Cotangente hiperbólica : $\coth x = \dfrac {\cosh x} {\operatorname{senh} x}.$
  • También recordamos que se verifican las relaciones: $$\cosh^2 x – \operatorname{senh}^2 x = 1,\quad \operatorname{sech}^2 x= 1 – \tanh^{2} x,\quad \operatorname{csch}^2 x = \coth^2 x – 1 .$$
  • Teorema.  (Derivación de las funciones hiperbólicas). Se verifica: $$\dfrac{d}{dx}\operatorname{senh} x =\cosh x,\quad\dfrac{d}{dx}\cosh x =\operatorname{senh} x,\quad\dfrac{d}{dx}\tanh x =\operatorname{sech}^2 x.$$ 
    Enunciado
  1. Hallar las derivadas de las funciones:
    $(a)\; y=2x\operatorname{senh} x.\;\; (b)\;y=\dfrac{3x^2}{\cosh x}.\,\, (c)\;y=x-\tanh x.$
  2. Demostrar que: $$\dfrac{d}{dx}\operatorname{senh} x =\cosh x,\quad\dfrac{d}{dx}\cosh x =\operatorname{senh} x,\quad\dfrac{d}{dx}\tanh x =\operatorname{sech}^2 x.$$
  3. Calcular: $(a)\;\dfrac{d}{dx}\operatorname{csch} x.\;(b)\;\dfrac{d}{dx}\operatorname{sech} x.\;(c)\;\dfrac{d}{dx}\coth x. $
    Solución
  1. $(a)$ $y’=2\operatorname{senh} x+2x\cosh x=2(\operatorname{senh} x+x\cosh x).$
    $(b)$ $y’=\dfrac{6x\cosh x-3x^2\operatorname{senh} x}{\cosh^2x}=\dfrac{3(2x\cosh x-3x^2\operatorname{senh} x)}{\cosh^2x}.$
    $(c)$ $y’=1-\operatorname{sech}^2x=1-\dfrac{1}{\cosh^2x}=\dfrac{\cosh^2x-1}{\cosh^2x}=\dfrac{\operatorname{senh}^2 x}{\cosh^2x}=\tanh^2x.$
  2. $$\dfrac{d}{dx}\operatorname{senh} x=\dfrac{d}{dx}\left(\dfrac{1}{2}\left(e^x-e^{-x}\right)\right)=\dfrac{1}{2}\dfrac{d}{dx}\left(e^x-\dfrac{1}{e^x}\right)=\dfrac{1}{2}\left(e^x-\dfrac{-e^x}{e^{2x}}\right)$$$$=\dfrac{1}{2}\left(e^x+e^{-x}\right)=\cosh x.$$$$\dfrac{d}{dx}\cosh x=\dfrac{d}{dx}\left(\dfrac{1}{2}\left(e^x+e^{-x}\right)\right)=\dfrac{1}{2}\dfrac{d}{dx}\left(e^x+\dfrac{1}{e^x}\right)=\dfrac{1}{2}\left(e^x+\dfrac{-e^x}{e^{2x}}\right)$$$$=\dfrac{1}{2}\left(e^x-e^{-x}\right)=\operatorname{senh} x.$$Nota. Se pueden acortar algo las demostraciones anteriores usando el teorema de derivación de funciones compuestas.$$\dfrac{d}{dx}\tanh x =\dfrac{d}{dx}\left(\dfrac{\operatorname{senh} x}{\cosh x}\right)=\dfrac{\cosh x\cosh x-\operatorname{senh} x \operatorname{senh} x}{\cosh^2 x}$$$$=\dfrac{\cosh^2 x-\operatorname{senh}^2 x}{\cosh^2 x}=\dfrac{1}{\cosh^2 x}=\operatorname{sech}^2 x.$$
  3. $(a)$ $\dfrac{d}{dx}\operatorname{csch} x=\dfrac{d}{dx}\left(\dfrac{1}{\operatorname{senh} x}\right)=\dfrac{-\cosh x}{\operatorname{senh}^2 x}=-\coth x \operatorname{csch} x.$
    $(b)$ $\dfrac{d}{dx}\operatorname{sech} x=\dfrac{d}{dx}\left(\dfrac{1}{\cosh x}\right)=\dfrac{-\operatorname{senh} x}{\cosh^2 x}=-\tanh x \operatorname{sech} x.$
    $$(c)\qquad \dfrac{d}{dx}\coth x=\dfrac{d}{dx}\left(\dfrac{\cosh x}{\operatorname{senh} x}\right)=\dfrac{\operatorname{senh} x \operatorname{senh} x-\cosh x\cosh x}{\operatorname{senh}^2 x}$$$$=\dfrac{\operatorname{senh}^2 x-\cosh^2 x}{\operatorname{senh}^2 x}=\dfrac{-1}{\operatorname{senh}^2 x}=-\operatorname{csch}^2 x.$$
Esta entrada ha sido publicada en Análisis real y complejo y etiquetada como , , . Guarda el enlace permanente.