Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo del Autor: Fernando Revilla
$\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
RESUMEN. Calculamos un límite por sumas de Riemann. Enunciado Calcular $L=\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$ Solución Denotemos $A(n)={\dfrac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots (n+n)}}.$ Entonces, $$A(n)=\displaystyle\sqrt[n]{\frac{(n+1)(n+2)\cdots (n+n)}{n^n}}=\sqrt[ n]{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\cdots \left(1+\frac{n}{n}\right)}.$$ Tomando logaritmos, $$\log A(n)=\displaystyle\frac{1}{n}\displaystyle\sum_{k=1}^n{\log \left(1+\frac{k}{n}\right)}$$ y usando la conocida fórmula de las sumas de Riemann $$\displaystyle\lim_{n\to +\infty}\sum_{k=1}^n\frac{1}{n}f\left(\frac{k}{n}\right)=\int_0^1f(x)\;dx$$ obtenemos $$\lim_{n\to … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado límite, Riemann, sumas
Comentarios desactivados en $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
Edo $y^{\prime\prime}=x(y^\prime)^3$
RESUMEN. Resolvemos una ecuación diferencial de segundo orden. Enunciado Resolver la ecuación diferencial de segundo orden $y^{\prime\prime}=x(y^\prime)^3.$ Solución Denotando $p=y^\prime$ queda $p^\prime=xp^3$ o bien $dp/dx=xp^3$ o bien $dp/p^3=xdx$, ecuación de variables separadas. Integrando $$\int \frac{dp}{p^3}=\int xdx,\quad -\frac{1}{p^2}=\frac{x^2}{2}+C,$$ $$-\frac{1}{p^2}=x^2+C,\quad p^2=\frac{1}{-x^2-C},$$ $$p=\frac{1}{\sqrt{C_1-x^2}},\quad … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado diferencial, ecuación, orden, segundo
Comentarios desactivados en Edo $y^{\prime\prime}=x(y^\prime)^3$
Isomorfismo entre dos anillos
RESUMEN. Establecemos un isomorfismo entre dos anillos. Enunciado (1) Demostrar que $\mathbb{Z}[\sqrt{2}]=\left\{{a+b\sqrt{2}}:a,b\in\mathbb{Z}\right\}$ es anillo unitario y conmutativo con las operaciones suma y producto habituales. (2) Demostrar que $$H=\left\{{\begin{pmatrix} a & 2b \\b & a \end{pmatrix}}: a,b \in \mathbb{Z}\right\}$$ es anillo … Sigue leyendo
Publicado en Álgebra
Etiquetado anillos, isomorfismo
Comentarios desactivados en Isomorfismo entre dos anillos
Plano osculador y curva plana
RESUMEN. Demostramos que una curva es plana usando el concepto de plano osculador. Nota. Este problema ya se resolvió en Una curva plana sin usar el concepto de plano osculador. Enunciado Demostrar que la curva de ecuaciones paramétricas $$x=t,\;y=\dfrac{t^2+t+2}{t},\;z=\dfrac{-t^2-t+3}{t}\quad (t>0)$$ … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado curva plana, plano osculador
Comentarios desactivados en Plano osculador y curva plana
Factorización canónica de una aplicación
RESUMEN. Construimos la factorización canónica de una aplicación. Enunciado Sean $A$ y $B$ dos conjuntos no vacíos y $f:A\to B$ una aplicación. (1) Demostrar que la relación en $A$: $$xR y\Leftrightarrow f(x)=f(y)$$ es de equivalencia. Determinar el conjunto cociente $A/R$. … Sigue leyendo
Publicado en Álgebra
Etiquetado aplicación, canónica, factorización
Comentarios desactivados en Factorización canónica de una aplicación