Archivo de la categoría: Álgebra

Mínima $\sigma-$álgebra que contiene a otra y a un conjunto

RESUMEN. Determinamos la mínima $\sigma$-álgebra que contiene a otra y a un conjunto. Enunciado Sea $\mathcal{F}$ una $\sigma-$álgebra en un conjunto $\Omega$ y $A\subset{\Omega}$ tal que $A\not\in \mathcal{F}$. Demostrar que la más pequeña $\sigma-$álgebra que contiene a $\mathcal{F}\cup\{A\}$ es $$\mathcal{G}=\left\{{(A\cap{B_1})\cup{(A^{c}\cap{B_2})}} … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Deja un comentario

Matriz del cuadrado de un endomorfismo

RESUMEN. Calculamos la matriz del cuadrado de un endomorfismo por dos métodos distintos. Enunciado Sea $V$ un espacio vectorial real y $B=\{v_1,v_2\}$, $B^\prime=\{v_2,-v_1+v_2\}$ sendas bases de $V.$ Se considera el endomorfismo $f:V\to V$ tal que su matriz en las bases … Sigue leyendo

Publicado en Álgebra | Etiquetado , | Comentarios desactivados en Matriz del cuadrado de un endomorfismo