Archivo de la categoría: Álgebra

Partes del producto y producto de las partes

RESUMEN. Determinamos los cardinales de las partes del producto y del producto de las partes para conjuntos finitos. Enunciado Sean $A$ y $B$ dos conjuntos finitos de cardinales $|A|=n$ y $|B|=m.$ (a) Determinar los cardinales de las partes del producto … Sigue leyendo

Publicado en Álgebra | Etiquetado , | Comentarios desactivados en Partes del producto y producto de las partes

Isomorfismo entre dos anillos

RESUMEN. Establecemos un isomorfismo entre dos anillos. Enunciado (1) Demostrar que $\mathbb{Z}[\sqrt{2}]=\left\{{a+b\sqrt{2}}:a,b\in\mathbb{Z}\right\}$ es anillo unitario y conmutativo con las operaciones suma y producto habituales. (2) Demostrar que $$H=\left\{{\begin{pmatrix} a & 2b \\b & a \end{pmatrix}}: a,b \in \mathbb{Z}\right\}$$ es anillo … Sigue leyendo

Publicado en Álgebra | Etiquetado , | Comentarios desactivados en Isomorfismo entre dos anillos

Factorización canónica de una aplicación

RESUMEN. Construimos la factorización canónica de una aplicación. Enunciado Sean $A$ y $B$ dos conjuntos no vacíos y $f:A\to B$ una aplicación. (1) Demostrar que la relación en $A$: $$xR y\Leftrightarrow f(x)=f(y)$$ es de equivalencia. Determinar el conjunto cociente $A/R$. … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Factorización canónica de una aplicación

Conmutatividad de la suma en los anillos

RESUMEN. Demostramos que en un anillo conmutativo y unitario, la conmutatividad de la suma se puede deducir de los restantes axiomas. Enunciado Sea $(A,+,\cdot)$ un anillo conmutativo y unitario. Demostrar que la conmutatividad de la suma se puede deducir de … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Conmutatividad de la suma en los anillos

Polinomios de Chebyshev y número algebraico

RESUMEN. Usando los polinomios de Chebyshev demostramos que un número es algebraico. Enunciado (1) Los polinomios de Chebyshev $T_n(x)$ se definen mediante: $$T_0(x) = 1,\; T_1(x) = x,\; T_{n+2}(x) = 2xT_{n+1}(x) – T_{n}(x).$$ Demostrar que se verifica $T_n(\cos \theta)=\cos n\theta$ … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Polinomios de Chebyshev y número algebraico