Archivo de la categoría: Álgebra

Factorización canónica de una aplicación

RESUMEN. Construimos la factorización canónica de una aplicación. Enunciado Sean $A$ y $B$ dos conjuntos no vacíos y $f:A\to B$ una aplicación. (1) Demostrar que la relación en $A$: $$xR y\Leftrightarrow f(x)=f(y)$$ es de equivalencia. Determinar el conjunto cociente $A/R$. … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Factorización canónica de una aplicación

Conmutatividad de la suma en los anillos

RESUMEN. Demostramos que en un anillo conmutativo y unitario, la conmutatividad de la suma se puede deducir de los restantes axiomas. Enunciado Sea $(A,+,\cdot)$ un anillo conmutativo y unitario. Demostrar que la conmutatividad de la suma se puede deducir de … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Conmutatividad de la suma en los anillos

Polinomios de Chebyshev y número algebraico

RESUMEN. Usando los polinomios de Chebyshev demostramos que un número es algebraico. Enunciado (1) Los polinomios de Chebyshev $T_n(x)$ se definen mediante: $$T_0(x) = 1,\; T_1(x) = x,\; T_{n+2}(x) = 2xT_{n+1}(x) – T_{n}(x).$$ Demostrar que se verifica $T_n(\cos \theta)=\cos n\theta$ … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Polinomios de Chebyshev y número algebraico

Dos números algebraicos

RESUMEN. Demostramos que dos números son algebraicos. Enunciado Demostrar que los siguientes números son algebraicos (a) $7+\sqrt[3]{2}$. (b) $\sqrt{3} +\sqrt{-5}$. Solución (a) Si $a=7+\sqrt[3]{2}$, entonces $a-7=\sqrt[3]{2}$ y por tanto $(a-7)^3=2.$ Es decir, $a\in\mathbb{R}$ es raíz del polinomio $p(x)=(x-7)^3-2\in \mathbb{Q}[x]$ lo … Sigue leyendo

Publicado en Álgebra | Etiquetado , | Comentarios desactivados en Dos números algebraicos

Producto directo externo de grupos

RESUMEN. Construimos el producto directo externo de grupos. Enunciado Sea $\{G_i:i\in I\}$ una colección de gupos con notación multiplicativa y consideremos el producto cartesiano $$G=\prod_{i\in I}G_i=\{f:I\to\bigcup_{i\in I}G_i,f\text{ aplicación}:f(i)\in G_i\;\forall i\in I\}.$$ Para cada par de elementos $f,g\in G$ definimos $fg$ … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Producto directo externo de grupos