Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la categoría: Álgebra
Isomorfismo entre dos anillos
RESUMEN. Establecemos un isomorfismo entre dos anillos. Enunciado (1) Demostrar que $\mathbb{Z}[\sqrt{2}]=\left\{{a+b\sqrt{2}}:a,b\in\mathbb{Z}\right\}$ es anillo unitario y conmutativo con las operaciones suma y producto habituales. (2) Demostrar que $$H=\left\{{\begin{pmatrix} a & 2b \\b & a \end{pmatrix}}: a,b \in \mathbb{Z}\right\}$$ es anillo … Sigue leyendo
Publicado en Álgebra
Etiquetado anillos, isomorfismo
Comentarios desactivados en Isomorfismo entre dos anillos
Factorización canónica de una aplicación
RESUMEN. Construimos la factorización canónica de una aplicación. Enunciado Sean $A$ y $B$ dos conjuntos no vacíos y $f:A\to B$ una aplicación. (1) Demostrar que la relación en $A$: $$xR y\Leftrightarrow f(x)=f(y)$$ es de equivalencia. Determinar el conjunto cociente $A/R$. … Sigue leyendo
Publicado en Álgebra
Etiquetado aplicación, canónica, factorización
Comentarios desactivados en Factorización canónica de una aplicación
Conmutatividad de la suma en los anillos
RESUMEN. Demostramos que en un anillo conmutativo y unitario, la conmutatividad de la suma se puede deducir de los restantes axiomas. Enunciado Sea $(A,+,\cdot)$ un anillo conmutativo y unitario. Demostrar que la conmutatividad de la suma se puede deducir de … Sigue leyendo
Publicado en Álgebra
Etiquetado anillo, axiomas, conmutatividad, suma
Comentarios desactivados en Conmutatividad de la suma en los anillos
Polinomios de Chebyshev y número algebraico
RESUMEN. Usando los polinomios de Chebyshev demostramos que un número es algebraico. Enunciado (1) Los polinomios de Chebyshev $T_n(x)$ se definen mediante: $$T_0(x) = 1,\; T_1(x) = x,\; T_{n+2}(x) = 2xT_{n+1}(x) – T_{n}(x).$$ Demostrar que se verifica $T_n(\cos \theta)=\cos n\theta$ … Sigue leyendo
Publicado en Álgebra
Etiquetado algebraico, Chebyshev, número, polinomios
Comentarios desactivados en Polinomios de Chebyshev y número algebraico
Dos números algebraicos
RESUMEN. Demostramos que dos números son algebraicos. Enunciado Demostrar que los siguientes números son algebraicos (a) $7+\sqrt[3]{2}$. (b) $\sqrt{3} +\sqrt{-5}$. Solución (a) Si $a=7+\sqrt[3]{2}$, entonces $a-7=\sqrt[3]{2}$ y por tanto $(a-7)^3=2.$ Es decir, $a\in\mathbb{R}$ es raíz del polinomio $p(x)=(x-7)^3-2\in \mathbb{Q}[x]$ lo … Sigue leyendo
Publicado en Álgebra
Etiquetado algebraicos, números
Comentarios desactivados en Dos números algebraicos