Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la categoría: Análisis real y complejo
Límites en dos variables
RESUMEN. Proporcionamos ejercicios de límites en dos variables. Enunciado Demostrar usando la definición que $\displaystyle \lim_{(x,y)\to (0,0)}(x+y)=0.$ Demostrar usando la definición que $\displaystyle \lim_{(x,y)\to (0,0)}xy=0.$ Demostrar que $L=\displaystyle\lim\limits_{(x,y)\to (0,0)}\frac{x^3 – y^3}{x^2+y^2}=0.$ Se considera la función $$f(x,y)=\left \{ \begin{matrix} \displaystyle\frac{y}{x}\sin (x^2+y^2) … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado límites
Comentarios desactivados en Límites en dos variables
Norma en el espacio de las funciones de clase 1
RESUMEN. Construimos una norma en el espacio de las funciones de clase 1 en el intervalo cerrado $[a,b].$ Enunciado En el espacio vectorial $C^1[a,b]$ de las funciones reales definidas en $[a,b]$ con derivada continua, demostrar que $$ \|f\|=\max |f(t)|+\max |f^{\prime}(t)|$$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado clase, funciones, norma
Comentarios desactivados en Norma en el espacio de las funciones de clase 1
Límite por cambio de variable
RESUMEN. Calculamos un límite efectuando un cambio de variable, previo a la aplicación de la regla de L’Hopital. Enunciado Calcular el límite $L=\displaystyle\lim_{x \to\infty}\left(\displaystyle\frac{x}{\sin\frac{1}{x}} – x^2\right).$ Solución Efectuando el cambio de variable $t=1/x$ queda $$L=\lim_{t \to 0}\left(\displaystyle\frac{\dfrac{1}{t}}{\sin t} – \frac{1}{t^2}\right)=\lim_{t\to … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado cambio, límite, variable
Comentarios desactivados en Límite por cambio de variable
Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
RESUMEN. Demostramos que la serie compleja $\displaystyle\sum_{n=1}^{\infty}\frac{\sin nz}{n}$ converge si $\text{Im }z=0$ y diverge si $\text{Im }z\ne 0.$ Enunciado (a) Siendo $n$ un entero positivo, y $x$ real, determinar la suma $$S_n=\sin x+\sin 2x+\cdots+\sin nx .$$ (b) Usando el criterio … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$, convergencia, serie
Comentarios desactivados en Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
Módulo del seno complejo y del coseno complejo
RESUMEN. Determinamos el módulo del seno complejo y del coseno complejo. Enunciado Sea $z=x+iy\in\mathbb C$ con $x,y\in\mathbb R$. Demostrar que $$(a)\; \left|\sin z\right| = \sqrt {\sin^2 x + \sinh^2 y}.\qquad (b)\;\left|\cos z\right| = \sqrt {\cos^2 x + \sinh^2 y}.$$ Solución … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado complejo, coseno, módulo, seno
Comentarios desactivados en Módulo del seno complejo y del coseno complejo