Menú
-
Entradas recientes
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la categoría: Ecuaciones diferenciales
Edo $y^{\prime\prime}=x(y^\prime)^3$
RESUMEN. Resolvemos una ecuación diferencial de segundo orden. Enunciado Resolver la ecuación diferencial de segundo orden $y^{\prime\prime}=x(y^\prime)^3.$ Solución Denotando $p=y^\prime$ queda $p^\prime=xp^3$ o bien $dp/dx=xp^3$ o bien $dp/p^3=xdx$, ecuación de variables separadas. Integrando $$\int \frac{dp}{p^3}=\int xdx,\quad -\frac{1}{p^2}=\frac{x^2}{2}+C,$$ $$-\frac{1}{p^2}=x^2+C,\quad p^2=\frac{1}{-x^2-C},$$ $$p=\frac{1}{\sqrt{C_1-x^2}},\quad … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado diferencial, ecuación, orden, segundo
Comentarios desactivados en Edo $y^{\prime\prime}=x(y^\prime)^3$
Plano de fases de $x^\prime=x,y^\prime=y^2$
RESUMEN. Esbozamos el plano de fases de un sistema diferencial autónomo. Enunciado Se considera el sistema diferencial autónomo $$\left \{ \begin{matrix} x^\prime=x\\y^\prime=y^2\end{matrix}\right.$$ (1) Determinar sus soluciones. (2) Esbozar el plano de fases asociado al sistema. Solución (1) Las ecuaciones del … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado plano fases
Comentarios desactivados en Plano de fases de $x^\prime=x,y^\prime=y^2$
Ecuación homogénea en función de cuadraturas
RESUMEN. Resolvemos una ecuación homogénea dejando la solución en términos de cuadraturas. Enunciado Resolver la ecuación diferencial $$x dy+\left[x \sec \left(\displaystyle\frac{y}{x}\right)+y\right]dx =0.$$ Solución Llamando $Q(x,y)=x$, $P(x,y)=x \sec \left(y/x\right)+y,$ $$\begin{aligned}& Q(tx,ty)=tx=tQ(x,y),\\ &P(tx,ty)=(tx) \sec \left(\displaystyle\frac{ty}{tx}\right)+ty=t\left[x \sec \left(\displaystyle\frac{y}{x}\right)+y\right]=tP(x,y). \end{aligned}$$ Es decir, las funciones … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado cuadraturas, ecuació, homogénea
Comentarios desactivados en Ecuación homogénea en función de cuadraturas
Ecuación en diferencias completa
RESUMEN. Proporcionamos un método para la resolución de la ecuación en diferencias completa. Recordamos que una ecuación en diferencias lineal de orden $k$ con coeficientes constantes es una expresión de la forma $$x_{n+k}+a_1x_{n+k-1}+\ldots +a_{k-1}x_{n+1}+a_kx_n=b(n)$$ en donde $a_1,a_2,\ldots,a_k$ son números reales … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado completa, diferencias, ecuación
Comentarios desactivados en Ecuación en diferencias completa
Ecuación en diferencias homogénea
RESUMEN. Proporcionamos un método para la resolución de la ecuación en diferencias homogénea. Definición. Se llama ecuación en diferencias lineal de orden $k$ con coeficientes constantes a toda expresión de la forma $$x_{n+k}+a_1x_{n+k-1}+\ldots +a_{k-1}x_{n+1}+a_kx_n=b(n)\qquad (1)$$ en donde $a_1,a_2,\ldots,a_k$ son números … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado diferencias, ecuación, homogénea
Comentarios desactivados en Ecuación en diferencias homogénea