Archivo de la categoría: Ecuaciones diferenciales

Edo $y^{\prime\prime}=x(y^\prime)^3$

RESUMEN. Resolvemos una ecuación diferencial de segundo orden. Enunciado Resolver la ecuación diferencial de segundo orden $y^{\prime\prime}=x(y^\prime)^3.$ Solución Denotando $p=y^\prime$ queda $p^\prime=xp^3$ o bien $dp/dx=xp^3$ o bien $dp/p^3=xdx$, ecuación de variables separadas. Integrando $$\int \frac{dp}{p^3}=\int xdx,\quad -\frac{1}{p^2}=\frac{x^2}{2}+C,$$ $$-\frac{1}{p^2}=x^2+C,\quad p^2=\frac{1}{-x^2-C},$$ $$p=\frac{1}{\sqrt{C_1-x^2}},\quad … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , , , | Comentarios desactivados en Edo $y^{\prime\prime}=x(y^\prime)^3$

Plano de fases de $x^\prime=x,y^\prime=y^2$

RESUMEN. Esbozamos el plano de fases de un sistema diferencial autónomo. Enunciado Se considera el sistema diferencial autónomo $$\left \{ \begin{matrix} x^\prime=x\\y^\prime=y^2\end{matrix}\right.$$ (1) Determinar sus soluciones. (2) Esbozar el plano de fases asociado al sistema. Solución (1) Las ecuaciones del … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado | Comentarios desactivados en Plano de fases de $x^\prime=x,y^\prime=y^2$

Ecuación homogénea en función de cuadraturas

RESUMEN. Resolvemos una ecuación homogénea dejando la solución en términos de cuadraturas. Enunciado Resolver la ecuación diferencial $$x dy+\left[x \sec \left(\displaystyle\frac{y}{x}\right)+y\right]dx =0.$$ Solución Llamando $Q(x,y)=x$, $P(x,y)=x \sec \left(y/x\right)+y,$ $$\begin{aligned}& Q(tx,ty)=tx=tQ(x,y),\\ &P(tx,ty)=(tx) \sec \left(\displaystyle\frac{ty}{tx}\right)+ty=t\left[x \sec \left(\displaystyle\frac{y}{x}\right)+y\right]=tP(x,y). \end{aligned}$$ Es decir, las funciones … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , , | Comentarios desactivados en Ecuación homogénea en función de cuadraturas

Ecuación en diferencias completa

RESUMEN. Proporcionamos un método para la resolución de la ecuación en diferencias completa. Recordamos que una ecuación en diferencias lineal de orden $k$ con coeficientes constantes es una expresión de la forma $$x_{n+k}+a_1x_{n+k-1}+\ldots +a_{k-1}x_{n+1}+a_kx_n=b(n)$$ en donde $a_1,a_2,\ldots,a_k$ son números reales … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , , | Comentarios desactivados en Ecuación en diferencias completa

Ecuación en diferencias homogénea

RESUMEN. Proporcionamos un método para la resolución de la ecuación en diferencias homogénea. Definición. Se llama ecuación en diferencias lineal de orden $k$ con coeficientes constantes a toda expresión de la forma $$x_{n+k}+a_1x_{n+k-1}+\ldots +a_{k-1}x_{n+1}+a_kx_n=b(n)\qquad (1)$$ en donde $a_1,a_2,\ldots,a_k$ son números … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , , | Comentarios desactivados en Ecuación en diferencias homogénea