Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la categoría: Ecuaciones diferenciales
Sistema diferencial dependiente de un parámetro
Hallamos la solución general de un sistema diferencial dependiente de un parámetro. Enunciado Resolver el sistema diferencial $$\begin{cases}{x^{\prime}}=cx+y+2\\{y^{\prime}}=-c^2x-cy+1 \end{cases}\quad (c\in\mathbb{R}).$$ Solución En forma matricial, $$\begin{bmatrix}{x^\prime}\\{y^\prime}\end{bmatrix}=\begin{bmatrix}{c}&{1}\\{-c^2}&{-c}\end{bmatrix}\begin{bmatrix}{x}\\{y}\end{bmatrix}+\begin{bmatrix}{2}\\{1}\end{bmatrix}.$$ Hallemos la forma de Jordan de la matriz $A=\begin{bmatrix}{c}&{1}\\{-c^2}&{-c}\end{bmatrix}.$ El polinomio característico de $A$ es … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado dependiente, diferencial, parámetro, sistema
Comentarios desactivados en Sistema diferencial dependiente de un parámetro
Variación de las constantes para $x^{\prime\prime} +P(t)x^\prime+Q(t)x=\cos t$
Aplicamos el método de variación de las constantes a una ecuación de segundo orden conociendo dos soluciones de la homogénea. Enunciado Si la ecuación diferencial $x^{\prime\prime} +P(t)x^\prime+Q(t)x=0$ tiene como soluciones $\varphi_1(t)=\sin^2 t$ y $\varphi_2(t)=\sin t$, encontrar una solución particular de … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado $x^{\prime\prime} +P(t)x^\prime+Q(t)x=\cos t$., constantes, variación
Comentarios desactivados en Variación de las constantes para $x^{\prime\prime} +P(t)x^\prime+Q(t)x=\cos t$
Ecuación de Verhulst
Resolvemos la ecuación de Verhulst. Definición. A la ecuación diferencial $$\frac{dP}{dt}=rP\left(1 – \frac{P}{K}\right)$$ se la llama ecuación de Verhulst. $P$ es la variable depenciente (población), $t$ la independiente (tiempo), $r$ es el coeficiente de la razón de crecimiento de la … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado ecuación, Verhulst
Comentarios desactivados en Ecuación de Verhulst
EDO por cambio de variable independiente
Resolvemos una EDO de segundo orden por medio de un cambio de variable independiente. Enunciado Para $0 < x <1$ consideremos la ecuación diferencial $$x(1-x^2)^2y^{\prime\prime}-(1-x^2)^2y^\prime+5x^3y=0.$$ Resolverla usando el cambio de variable independiente $t=-\dfrac12\ln(1-x^2).$ Solución Para $0 < x < 1$ … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado cambio, EDO, independiente, variable
Comentarios desactivados en EDO por cambio de variable independiente
Ecuación de Legendre
Estudiamos la ecuación de Legendre. Enunciado Se llama ecuación de Legendre a la ecuación diferencial $$(1-x^2)y^{\prime\prime}-2xy^\prime +\alpha(\alpha+1)y=0\qquad (L)$$ con $\alpha$ real. Demostrar que la ecuación de Legendre se puede escribir en la forma $$\left((x^2-1)y^\prime\right)^\prime=\alpha (\alpha+1)y.$$ Demostrar que la ecuación de … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado ecuación, Legendre
Comentarios desactivados en Ecuación de Legendre