Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la categoría: Miscelánea matemática
Plano osculador y curva plana
RESUMEN. Demostramos que una curva es plana usando el concepto de plano osculador. Nota. Este problema ya se resolvió en Una curva plana sin usar el concepto de plano osculador. Enunciado Demostrar que la curva de ecuaciones paramétricas $$x=t,\;y=\dfrac{t^2+t+2}{t},\;z=\dfrac{-t^2-t+3}{t}\quad (t>0)$$ … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado curva plana, plano osculador
Comentarios desactivados en Plano osculador y curva plana
Espacios topológicos finitos metrizables
RESUMEN. Demostramos que un espacio topológico finito es metrizable si y sólo si su topología es la discreta. Enunciado Sea $(X,T)$ un espacio topológico con $X$ finito. Demostrar que $(X,T)$ es metrizable si y sólo si $T$ es la topología … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado espacios, finitos, metrizables, topológicos
Comentarios desactivados en Espacios topológicos finitos metrizables
Equivalencia entre toda distancia y su acotada usual
RESUMEN. Demostramos que existe equivalencia entre toda distancia y su acotada usual. Enunciado Sea $d$ una distancia en un conjunto no vacío $X$ y sea $D(x,y)=\min\{1, d(x,y)\}$ la distancia acotada usual de $d.$ Demostrar que $d$ y $D$ son distancias … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado acotada, distancia, equivalencia, usual
Comentarios desactivados en Equivalencia entre toda distancia y su acotada usual
Distancia acotada usual
RESUMEN. Demostramos que la distancia acotada usual es efectivamente una distancia. Enunciado Sea $d$ una distancia en un conjunto no vacío $X.$ Demostrar que la función $D$ definida por $$D:X\times X\to [0,+\infty),\quad D(x,y)=\min\{1, d(x,y)\}$$ es una distancia. A la distancia … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado acotada, distancia, usual
Comentarios desactivados en Distancia acotada usual
Lema de Uryshon
RESUMEN. Demostramos el lema de Uryshon. Teorema (Lema de Uryshon) Un espacio topológico $(X,T)$ es normal si y sólo si para cada par de subconjuntos cerrados no vacíos y disjuntos $F_1,F_2\subset X$, existe una aplicación continua $f:X\to [0,1]$ tal que … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado lema, Uryshon
Comentarios desactivados en Lema de Uryshon