Archivo de la etiqueta: 1/\sin^2z

Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$

RESUMEN. Determinamos todos los coeficientes $c_n$ $(n < 0)$ del desarrollo en serie de Laurent de la función $1/\sin^2z$ en la corona $\pi < |z| < 2\pi$. Enunciado Sea $\displaystyle\sum _{n=-\infty }^{+\infty }c_nz^n$ el desarrollo de Laurent de $f(z)=\dfrac{1}{\sin^2 z}$ … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$