Menú
-
Entradas recientes
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: algebraico
Polinomios de Chebyshev y número algebraico
RESUMEN. Usando los polinomios de Chebyshev demostramos que un número es algebraico. Enunciado (1) Los polinomios de Chebyshev $T_n(x)$ se definen mediante: $$T_0(x) = 1,\; T_1(x) = x,\; T_{n+2}(x) = 2xT_{n+1}(x) – T_{n}(x).$$ Demostrar que se verifica $T_n(\cos \theta)=\cos n\theta$ … Sigue leyendo
Publicado en Álgebra
Etiquetado algebraico, Chebyshev, número, polinomios
Comentarios desactivados en Polinomios de Chebyshev y número algebraico
Descomposición de un conjunto algebraico en unión de irreducibles
Demostramos que todo conjunto algebraico es unión de conjuntos algebraicos irreducibles. Lema. Sea $A$ un anillo noetheriano y $\mathscr{S}$ una colección no vacía de ideales de $A.$ Entonces, $\mathscr{S}$ tiene un elemento maximal, es decir existe un ideal $I$ de … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado algebraico, conjunto, descomposición, irreducibles, unión
Comentarios desactivados en Descomposición de un conjunto algebraico en unión de irreducibles
Polinomio mínimo de un elemento algebraico
Definimos el concepto de polinomio mínimo de un elemento algebraico y estudiamos alguna de sus propiedades. Definición Sea $K/k$ una extensión de cuerpos y $\alpha\in K$ algebraico sobre $k.$ Sea $p(x)=x^\nu+\ldots +a_1x+a_0\in k[x]$ el polinomio de menor grado y mónico … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado algebraico, elemento, mínimo, polinomio
Comentarios desactivados en Polinomio mínimo de un elemento algebraico