Archivo de la etiqueta: algebraicos

Dos números algebraicos

RESUMEN. Demostramos que dos números son algebraicos. Enunciado Demostrar que los siguientes números son algebraicos (a) $7+\sqrt[3]{2}$. (b) $\sqrt{3} +\sqrt{-5}$. Solución (a) Si $a=7+\sqrt[3]{2}$, entonces $a-7=\sqrt[3]{2}$ y por tanto $(a-7)^3=2.$ Es decir, $a\in\mathbb{R}$ es raíz del polinomio $p(x)=(x-7)^3-2\in \mathbb{Q}[x]$ lo … Sigue leyendo

Publicado en Álgebra | Etiquetado , | Deja un comentario

Propiedades de los conjuntos algebraicos

RESUMEN. Demostramos propiedades de los conjuntos algebraicos. Teorema. Si $I$ es el ideal en $k[x_1,\ldots,x_n]$ generado por $S$, entonces $V(S) = V(I)$ es decir, cada conjunto algebraico es igual a $V(I)$ para algún ideal $I.$ Si $\{I_{\alpha}\}$ es una colección … Sigue leyendo

Publicado en Miscelánea matemática | Etiquetado , , | Comentarios desactivados en Propiedades de los conjuntos algebraicos

Caracterización de conjuntos algebraicos irreducibles

Demostramos una caracterización de los conjuntos algebraicos irreducibles Definición. Sea $k$ un cuerpo y $V\subset k^n$ un conjunto algebraico. Se dice que $V$ es reducible si existen $V_1,V_2$ conjuntos algebraicos de $k^n$ tales que $V=V_1\cup V_2$ con $V_1\ne V$ y … Sigue leyendo

Publicado en Miscelánea matemática | Etiquetado , , , | Comentarios desactivados en Caracterización de conjuntos algebraicos irreducibles

El conjunto de los números algebraicos es contable

Demostramos que el conjunto de los números algebraicos es contable. Trabajamos en la extensión de cuerpos $\mathbb{R}/\mathbb{Q}.$ Teorema. El conjunto de los números algebraicos es contable. Demostración. El conjunto $A$ de los números algebraicos se puede expresar en la forma: … Sigue leyendo

Publicado en Miscelánea matemática | Etiquetado , , , | Comentarios desactivados en El conjunto de los números algebraicos es contable