Archivo de la etiqueta: analítica

Infinitud de los números primos. Demostración analítica

RESUMEN. Damos una demostración analítica de la infinitud de los números primos. Teorema Existen infinitos números primos. Demostración Supongamos que solo existe un número finito de primos $p_1,\ldots,p_r.$ Consideremos el producto $$P=\prod_{k=1}^r\left(1-\frac{1}{p_k}\right)^{-1}$$ y expresemos cada factor como suma de una … Sigue leyendo

Publicado en Miscelánea matemática | Etiquetado , , , | Comentarios desactivados en Infinitud de los números primos. Demostración analítica

Función suave pero no analítica

Proporcionamos un ejemplo de función suave, i.e. de clase infinito, que no es analítica, i.e. que no es igual a la suma de su serie de Maclaurin. Enunciado Sea la función  $f:\mathbb{R}\to \mathbb{R}$ $$f(x)=\begin{cases}e^{-1/x}&\text{si }x>0,\\ 0&\text{si }x\le0.\end{cases}$$ Demostrar que para … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , | Comentarios desactivados en Función suave pero no analítica