Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: antisimétricas
Suma directa de las formas bilineales simétricas y antisimétricas
Demostramos que el espacio vectorial $\mathcal{B}(E)$ de las formas bilneales es suma directa de los subespacios de las simétricas y antisimétricas. Enunciado Sea $E$ espacio vectorial sobre el cuerpo $\mathbb{K}$ y $\mathcal{B}(E)$ el espacio vectorial de las formas bilineales de … Sigue leyendo
Publicado en Álgebra
Etiquetado antisimétricas, bilineales, directa, formas, simétricas, suma
Comentarios desactivados en Suma directa de las formas bilineales simétricas y antisimétricas
Formas bilineales simétricas y antisimétricas
Proporcionamos ejercicios de formas bilineales simétricas y antisimétricas. Enunciado Se consideran las formas bilineales en un espacio vectorial real de dimención 2, cuyas expresiones en coordenadas en una determinada base son: $(a)\;\; f(x,y)=2x_1y_1-5x_2y_1-5x_1y_2+4x_2y_2.$ $(b)\;\; g(x,y)=-3x_2y_1+3x_1y_2.$ $(c)\;\; h(x,y)=x_1y_1+7x_2y_1-2x_1y_2+6x_2y_2.$ Estudiar en cada … Sigue leyendo
Publicado en Álgebra
Etiquetado antisimétricas, bilineales, formas, simétricas
Comentarios desactivados en Formas bilineales simétricas y antisimétricas
Subespacio de las matrices antisimétricas, dimensión y base
Hallamos la dimensión y una base del subespacio de las matrices antisimétricas. Enunciado Hallar una base y la dimensión del subespacio $\mathcal{A}$ de $M_n(\mathbb{K})$ formado por las matrices antisimétricas. Particularizar para $n=3.$ Solución Toda matriz antisimétrica $A\in M_n(\mathbb{K})$ se puede … Sigue leyendo
Publicado en Álgebra
Etiquetado antisimétricas, base, dimensión, matrices, subespacio
Comentarios desactivados en Subespacio de las matrices antisimétricas, dimensión y base