Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: axiomas
Conmutatividad de la suma en los anillos
RESUMEN. Demostramos que en un anillo conmutativo y unitario, la conmutatividad de la suma se puede deducir de los restantes axiomas. Enunciado Sea $(A,+,\cdot)$ un anillo conmutativo y unitario. Demostrar que la conmutatividad de la suma se puede deducir de … Sigue leyendo
Publicado en Álgebra
Etiquetado anillo, axiomas, conmutatividad, suma
Comentarios desactivados en Conmutatividad de la suma en los anillos
Axiomas de separación
RESUMEN. En las siguientes entradas definimos los axiomas de separación $T_1$, $T_2$, $T_3$, $T_4$ y demostramos: $$\text{Esp. mét. }\underset{\displaystyle\nLeftarrow}{\Rightarrow}\text{Esp. }T_4\underset{\displaystyle\nLeftarrow}{\Rightarrow}\text{Esp. }T_3 \underset{\displaystyle \nLeftarrow}{\Rightarrow} \text{Esp. }T_2\underset{ \displaystyle \nLeftarrow}{\Rightarrow} \text{Esp. }T_1\underset{\displaystyle\nLeftarrow}{\Rightarrow}\text{ Esp. top.}$$ Menú de axiomas de separación Espacios topológicos $T_1$ Espacios … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado axiomas, separación
Comentarios desactivados en Axiomas de separación
Caracterización de una topología por axiomas de clausura de Kuratowski
Caracterizamos una topolocía por medio de los axiomas de clausura de Kuratowski. Enunciado Sea $X$ un conjunto no vacío y sea $k:\mathcal{P}(X)\to \mathcal{P}(X)$ una aplicación que satisface los llamados axiomas de clausura de Kuratowski:$$\begin{aligned}&\left[K_1\right]\quad k\left(\emptyset\right)=\emptyset.\\ &\left[K_2\right]\quad A\subset k(A)\text{ para todo … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado axiomas, caracterización, clausura, Kuratowski, topología
Comentarios desactivados en Caracterización de una topología por axiomas de clausura de Kuratowski