Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: C
Endomorfismo en $\mathbb{C}$ sobre $\mathbb{R}$
Estudiamos un endomorfismo en el espacio vectorial $\mathbb{C}$ sobre el cuerpo $\mathbb{R}.$ Enunciado Sea $\mathbb{C}$ el espacio vectorial de los números complejos respecto del cuerpo $\mathbb{R}$ de los números reales. Se considera la aplicación $f:\mathbb{C}\to \mathbb{C}$ definida para todo $z\in\mathbb{C}$ … Sigue leyendo
Publicado en Álgebra
Etiquetado C, endomorfismo, R
Comentarios desactivados en Endomorfismo en $\mathbb{C}$ sobre $\mathbb{R}$
Límite de sucesión de puntos diagonalizando en $\mathbb{C}$
Como aplicación de la teoría de valores y vectores propios, calculamos el límite de una sucesión de puntos diagonalizando en $\mathbb{C}$ Enunciado Se consideran tres puntos $p_1,p_2,p_3$ sobre la recta real y se construye una sucesión del siguiente modo: $p_4$ … Sigue leyendo