Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: cambio
EDO por cambio de variable independiente
Resolvemos una EDO de segundo orden por medio de un cambio de variable independiente. Enunciado Para $0 < x <1$ consideremos la ecuación diferencial $$x(1-x^2)^2y^{\prime\prime}-(1-x^2)^2y^\prime+5x^3y=0.$$ Resolverla usando el cambio de variable independiente $t=-\dfrac12\ln(1-x^2).$ Solución Para $0 < x < 1$ … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado cambio, EDO, independiente, variable
Comentarios desactivados en EDO por cambio de variable independiente
Cambio de referencia en el espacio afín
Deducimos la ecuación matricial del cambio de referencia en un espacio afín, y damos un ejemplo de aplicación. Enunciado Sean $\mathcal{R}=\{O,B\}$ y $\mathcal{R}’=\{O’,B’\}$ dos referencias en un espacio afín $\mathbb{A}$ de dimensión $n.$ Demostrar que se verifica $$\begin{bmatrix}1\\{x_1}\\ \vdots\\{x_n}\end{bmatrix}=\begin{bmatrix} 1 … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado afín, cambio, espacio, referencia
Comentarios desactivados en Cambio de referencia en el espacio afín
Formas bilineales: cambio de base
Proporcionamos ejercicios de cambio de base asociado a las formas bilineales. Enunciado La matriz de una forma bilineal $f=E\times F\to\mathbb{K}$ en las bases $B_E=\{u_1,u_2\}$ y $B_F=\{v_1,v_2,v_3\}$ es $$A=\begin{bmatrix}{2}&{-1}&{1}\\{3}&{4}&{1}\end{bmatrix}.$$ Hallar la matriz de $f$ en las nuevas bases $$B’_E=\{u_1-u_2,u_1+u_2\},\quad B’_F=\{v_1,v_1+v_2,v_1+v_2+v_3\}.$$ La … Sigue leyendo
Publicado en Álgebra
Etiquetado base, bilineales, cambio, formas
Comentarios desactivados en Formas bilineales: cambio de base
Cambio de base
Proporcionamos ejercicios sobre cambio de base en espacios vectoriales. Enunciado Sean $B=\{u_1,u_2\}$ y $B’=\{u’_1,u’_2\},$ dos bases de un espacio vectorial real $E$ de dimensión $2$ tales que $u’_1=u_1-2u_2,$ $u’_2=3u_1+4u_2.$ Se pide hallar: $a)$ La matriz de cambio o de paso … Sigue leyendo
Publicado en Álgebra
Etiquetado base, cambio, espacios, vecroriales
Comentarios desactivados en Cambio de base
Cambio de base en el espacio dual
Proporcionamos ejercicios sobre cambio de base en el espacio dual. Enunciado En $\mathbb{R}^3$ se consideran las bases: $$\begin{aligned}&B_1=\{(1,1,0),\;(-1,0,2),\;(0,2,5)\}\\ &B_2=\{(0,1,1),\;(1,1,1),\;(3,1,0)\}.\end{aligned}$$ Hallar la matriz de cambio de $B_1^*$ a $B_2^*.$ Sean $E$ un espacio vectorial de dimensión $2$, $B$ y $B’$ bases … Sigue leyendo