Archivo de la etiqueta: Cauchy

Fórmula integral de Cauchy y matriz exponencial

Relacionamos la fórmula integral de Cauchy con la matriz exponencial. Enunciado La fórmula integral de Cauchy se puede generalizar a matrices de la siguiente manera $$f(M)=\displaystyle\frac{1}{2\pi i}\displaystyle\int_{\gamma}f(z)(zI-M)^{-1}\;dz,$$ donde $\gamma$ es la circunferencia $|z|=r,$ $I$ es la matriz identidad y todos … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , , | Comentarios desactivados en Fórmula integral de Cauchy y matriz exponencial

Producto de Cauchy de series igual a la unidad

Enunciado Usando el producto de Cauchy de series, demostrar que $$\left(\sum_{n=0}^{+\infty}\frac{x^n}{n!}\right)\cdot \left(\sum_{n=0}^{+\infty}\frac{(-x)^n}{n!}\right)=1.$$ Dar una obvia interpretación de la igualdad anterior. Solución Aplicando el criterio de D’Alembert a ambas series para $x\ne 0,$ $$\lim_{n\to +\infty}\left|\frac{x^{n+1}}{(n+1)!}\right|:\left|\frac{n!}{x^n}\right|=\lim_{n\to +\infty}\frac{\left|x\right|}{n+1}=0<1,$$ $$\lim_{n\to +\infty}\left|\frac{(-x)^{n+1}}{(n+1)!}\right|:\left|\frac{n!}{(-x)^n}\right|=\lim_{n\to +\infty}\frac{\left|x\right|}{n+1}=0<1,$$ lo cual … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , , | Comentarios desactivados en Producto de Cauchy de series igual a la unidad

Valor principal de Cauchy de una integral impropia

Definimos el valor principal de Cauchy de una integral impropia. Enunciado Sea $f:\mathbb{R}\to \mathbb{R}$ continua a trozos en todo intervalo $[a,b].$ Definimos el valor principal de Cauchy (VP) de la integral $\int_{-\infty}^{+\infty}f(x)\;dx$ como $$\text{VP}\int_{-\infty}^{+\infty}f(x)\;dx=\lim_{t\to+\infty}\int_{-t}^{t}f(x)\;dx.$$ Demostrar que si $\int_{-\infty}^{+\infty}f(x)\;dx$ es convergente, … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , , | Comentarios desactivados en Valor principal de Cauchy de una integral impropia

Criterio de Cauchy para integrales impropias en intervalos infinitos

Enunciado Demostrar el criterio de Cauchy para integrales impropias en intervalos infinitos: Sea $f:[a,+\infty)\to\mathbb{R}$ continua a trozos en todo intervalo $[a,b].$ Demostrar que $$\int_a^{+\infty}f(x)\;dx \text{ es convergente}$$ $$\Leftrightarrow \forall \epsilon >0\;\exists b_0\text{ tal que } b’\ge b\ge b_0\Rightarrow \left|\int_b^{b’}f(x)\;dx\right|<\epsilon$$ Solución … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , , , | Comentarios desactivados en Criterio de Cauchy para integrales impropias en intervalos infinitos

Fórmulas integrales de Cauchy

Enunciado Calcular $(a)\;\displaystyle\int_{\left|z\right|=3}\frac{e^z}{z-2}dz.\quad (b)\;\displaystyle\int_{\left|z\right|=1}\frac{e^z}{z-2}dz.$ Calcular $(a)\;\displaystyle\int_{\left|z\right|=1}\frac{\operatorname{sen}^6z}{z-\pi/6}dz.\quad (b)\;\displaystyle\int_{\left|z\right|=2}\frac{e^{iz}}{z^3}dz.$ Calcular $\displaystyle\int_{C}\frac{e^{2z}}{z+\pi i}dz,$ si $C$ es $(a)\;$ La circunferencia $\left|z-1\right|=4.$ $(b)\;$ La elipse $\left|z-2\right|+\left|z+2\right|=6.$ Solución $(a)$ La función $f(z)=e^z$ es analítica en $\mathbb{C},$ por tanto en $\mathcal{R}\equiv\left|z\right|\leq 3$ y $2$ es interior a … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Fórmulas integrales de Cauchy