Menú
-
Entradas recientes
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: cerrado
Conjunto cerrado como intersección contable de abiertos
RESUMEN. Demostramos que en todo espacio métrico, cualquier conjunto cerrado se puede expresar como intersección contable de abiertos. Enunciado Demostrar que en todo espacio métrico, cualquier conjunto cerrado se puede expresar como intersección contable de abiertos. Solución Sea $(X,d)$ un … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado abiertos, cerrado, contable, intersección
Comentarios desactivados en Conjunto cerrado como intersección contable de abiertos
Todo subespacio de dimensión finita es cerrado
RESUMEN. Demostramos que todo subespacio de dimensión finita de un espacio normado es cerrado Enunciado Sea $E$ un espacio normado y $F$ un subespacio de $E$ de dimensión finita. Demostrar que $F$ es cerrado. Solución Sea $x\in\overline{F}$ y sea $(x_n)$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado cerrado, dimensión, finota, subespcio
Comentarios desactivados en Todo subespacio de dimensión finita es cerrado
$X=\left\{(t,t):t\in\mathbb{R}\setminus\{1\}\right\}$ no es cerrado con la topología de Zariski
Proporcionamos un ejemplo de conjunto no cerrado con la topología de Zariski. Enunciado Demostrar que $X=\left\{(t,t):t\in\mathbb{R}\setminus\{1\}\right\}$ no es cerrado en $\mathbb{R}^2$ con la topología de Zariski. Solución Los conjuntos cerrados con la topología de Zariski son exactamente los conjuntos algebraicos. … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado $X=left{(t, cerrado, t):tinmathbb{R}setminus{1}right}$, topología, Zariski
Comentarios desactivados en $X=\left\{(t,t):t\in\mathbb{R}\setminus\{1\}\right\}$ no es cerrado con la topología de Zariski