Archivo de la etiqueta: complejas

$A$ y $B$ matrices reales y semejantes como complejas, lo son como reales

Demostramos que dos matrices reales semejantes como complejas, lo son como reales. Aplicamos éste resultado para dar una forma canónica de una matriz cuadrada cuyo cuadrado es la opuesta de la identidad. Enunciado 1.  Sean $A$ y $B$ matrices cuadradas, … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , , , | Comentarios desactivados en $A$ y $B$ matrices reales y semejantes como complejas, lo son como reales

Funciones hiperbólicas complejas

Definimos las funciones hiperbólicas complejas, que generalizan a las trigonométricas reales. Enunciado Demostrar las relaciones $$\begin{aligned}&\cosh^2z-\operatorname{senh}^2z=1,\\& 1-\tanh^2z=\operatorname{sech}^2z,\\&\coth^2z-1=\operatorname{csch}^2z.\end{aligned}$$ Demostrar las relaciones $$\operatorname{senh}(-z)=-\operatorname{senh}z,\quad \cosh (-z)=\cos z,\quad \tanh (-z)=-\tanh z.$$ Demostrar las relaciones $$\begin{aligned}&a)\;\;\operatorname{senh}(z_1\pm z_2)=\operatorname{senh}z_1\cosh z_2\pm \cosh z_1\operatorname{senh}z_2,\\ &b)\;\;\cosh(z_1\pm z_2)=\cosh z_1\cosh z_2\pm \operatorname{senh} … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Funciones hiperbólicas complejas