Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: complejas
$A$ y $B$ matrices reales y semejantes como complejas, lo son como reales
Demostramos que dos matrices reales semejantes como complejas, lo son como reales. Aplicamos éste resultado para dar una forma canónica de una matriz cuadrada cuyo cuadrado es la opuesta de la identidad. Enunciado 1. Sean $A$ y $B$ matrices cuadradas, … Sigue leyendo
Funciones hiperbólicas complejas
Definimos las funciones hiperbólicas complejas, que generalizan a las trigonométricas reales. Enunciado Demostrar las relaciones $$\begin{aligned}&\cosh^2z-\operatorname{senh}^2z=1,\\& 1-\tanh^2z=\operatorname{sech}^2z,\\&\coth^2z-1=\operatorname{csch}^2z.\end{aligned}$$ Demostrar las relaciones $$\operatorname{senh}(-z)=-\operatorname{senh}z,\quad \cosh (-z)=\cos z,\quad \tanh (-z)=-\tanh z.$$ Demostrar las relaciones $$\begin{aligned}&a)\;\;\operatorname{senh}(z_1\pm z_2)=\operatorname{senh}z_1\cosh z_2\pm \cosh z_1\operatorname{senh}z_2,\\ &b)\;\;\cosh(z_1\pm z_2)=\cosh z_1\cosh z_2\pm \operatorname{senh} … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado complejas, funciones, hiperbólicas
Comentarios desactivados en Funciones hiperbólicas complejas
Funciones trigonométricas complejas
Definimos las funciones trigonométricas complejas, que generalizan a las trigonométricas reales. Enunciado Demostrar que las funciones seno y coseno complejos son una generalización de las correspondientes seno y coseno reales. Demostrar las relaciones $$\begin{aligned}&\operatorname{sen}^2z+\cos^2z=1,\\& 1+\tan^2z=\sec^2z,\\&1+\cot^2z=\csc^2z.\end{aligned}$$ Demostrar las relaciones $$\operatorname{sen}(-z)=-\operatorname{sen}z,\quad \cos … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado complejas, funciones, trigonométricas
Comentarios desactivados en Funciones trigonométricas complejas
Familia de racionales complejas
Enunciado Para cada número real $t$ con $|t|<1$ se considera la función compleja definida por $$f(z)=\displaystyle\frac{4-z^2}{4-4tz+z^2}.$$ y se pide: 1. Descomponer $f(z)$ en fracciones simples. 2. Obtener la expresión de las derivadas sucesivas en $z=0$ de la función $f(z).$ 3. … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado complejas, familia, racionales
Comentarios desactivados en Familia de racionales complejas
Series complejas enteras, radio de convergencia
Proporcionamos ejercicios sobre series complejas enteras y radio de convergencia. Enunciado Sea la serie entera compleja $\sum_{n\geq 0}a_nz^n.$ Demostrar que si converge para $z=z_0\neq 0,$ entonces converge para todo $z$ tal que $\left |z\right|<\left| z_0\right|.$ Sea la serie entera compleja … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado complejas, convergencia, enteras, radio, series
Comentarios desactivados en Series complejas enteras, radio de convergencia