Archivo de la etiqueta: complejas

$A$ y $B$ matrices reales y semejantes como complejas, lo son como reales

Demostramos que dos matrices reales semejantes como complejas, lo son como reales. Aplicamos éste resultado para dar una forma canónica de una matriz cuadrada cuyo cuadrado es la opuesta de la identidad. Enunciado 1.  Sean $A$ y $B$ matrices cuadradas, … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , , , | Comentarios desactivados en $A$ y $B$ matrices reales y semejantes como complejas, lo son como reales

Funciones hiperbólicas complejas

Definimos las funciones hiperbólicas complejas, que generalizan a las trigonométricas reales. Enunciado Demostrar las relaciones $$\begin{aligned}&\cosh^2z-\operatorname{senh}^2z=1,\\& 1-\tanh^2z=\operatorname{sech}^2z,\\&\coth^2z-1=\operatorname{csch}^2z.\end{aligned}$$ Demostrar las relaciones $$\operatorname{senh}(-z)=-\operatorname{senh}z,\quad \cosh (-z)=\cos z,\quad \tanh (-z)=-\tanh z.$$ Demostrar las relaciones $$\begin{aligned}&a)\;\;\operatorname{senh}(z_1\pm z_2)=\operatorname{senh}z_1\cosh z_2\pm \cosh z_1\operatorname{senh}z_2,\\ &b)\;\;\cosh(z_1\pm z_2)=\cosh z_1\cosh z_2\pm \operatorname{senh} … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Funciones hiperbólicas complejas

Funciones trigonométricas complejas

Definimos las funciones trigonométricas complejas, que generalizan a las trigonométricas reales. Enunciado Demostrar que las funciones seno y coseno complejos son una generalización de las correspondientes seno y coseno reales. Demostrar las relaciones $$\begin{aligned}&\operatorname{sen}^2z+\cos^2z=1,\\& 1+\tan^2z=\sec^2z,\\&1+\cot^2z=\csc^2z.\end{aligned}$$ Demostrar las relaciones $$\operatorname{sen}(-z)=-\operatorname{sen}z,\quad \cos … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Funciones trigonométricas complejas

Familia de racionales complejas

Enunciado Para cada número real $t$ con $|t|<1$ se considera la función compleja definida por $$f(z)=\displaystyle\frac{4-z^2}{4-4tz+z^2}.$$ y se pide: 1. Descomponer $f(z)$ en fracciones simples. 2. Obtener la expresión de las derivadas sucesivas en $z=0$ de la función $f(z).$ 3. … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Familia de racionales complejas

Series complejas enteras, radio de convergencia

Proporcionamos ejercicios sobre series complejas enteras y radio de convergencia. Enunciado Sea la serie entera compleja $\sum_{n\geq 0}a_nz^n.$ Demostrar que si converge para $z=z_0\neq 0,$ entonces converge para todo $z$ tal que $\left |z\right|<\left| z_0\right|.$ Sea la serie entera compleja … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , , | Comentarios desactivados en Series complejas enteras, radio de convergencia

Series complejas: criterios de la raíz y del cociente

Aplicamos los criterios de la raíz y del cociente al estudio de la convergencia de series complejas. Enunciado Demostrar que toda serie absolutamente convergente es convergente. Demostrar que no toda serie convergente es absolutamente convergente. Demostrar el criterio de la … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , , | Comentarios desactivados en Series complejas: criterios de la raíz y del cociente

Series complejas: conceptos básicos

Se definen los conceptos de convergencia y suma de serie de números complejos de manera análoga a la de números reales. Enunciado (Condición necesaria para la convergencia de una serie). Demostrar que si la serie compleja $\sum_{n=1}^{+\infty}u_n$ es convergente, entonces … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , | Comentarios desactivados en Series complejas: conceptos básicos