Archivo de la etiqueta: complejos

Un cuerpo de matrices isomorfo al de los complejos

Proporcionamos un ejemplo de cuerpo de matrices isomorfo al de los complejos. Enunciado Demostrar que el conjunto $\mathcal{A}=\{A_{(x,y)}=\begin{bmatrix}{\;\;x}&{y}\\{-y}&{x}\end{bmatrix}:x,y\in \mathbb{R}\}$ es un cuerpo con las operaciones suma y producto habituales de matrices. Demostrar que la aplicación $f:\mathbb{C}\to\mathcal{A}$ dada por $f(x+iy)=A_{(x,y)}$ es … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Un cuerpo de matrices isomorfo al de los complejos

Los complejos no pueden ser un cuerpo ordenado

Definimos el concepto de cuerpo ordenado y demostramos que los complejos no lo pueden ser. Enunciado Sea $(K,+,\cdot)$ un cuerpo y $\le$ una relación de orden total en $K.$ Decimos que $(K,\le)$ es un cuerpo ordenado si se verifican los … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Los complejos no pueden ser un cuerpo ordenado