Archivo de la etiqueta: concepto

Concepto de integral impropia en intervalos infinitos

Definimos el concepto de integral impropia en intervalos infinitos, y damos ejemplos de cálculo. Enunciado Calcular: $$(a)\;\displaystyle\int_1^{+\infty}\frac{dx}{x}.\quad (b)\;\displaystyle\int_1^{+\infty}\frac{dx}{x^3}.\quad (c)\;\displaystyle\int_0^{+\infty}\text{sen }x\;dx.$$ Calcular: $\;(a)\;\displaystyle\int_{-\infty}^{-1}\frac{dx}{x^2}.\quad (b)\;\displaystyle\int_{-\infty}^0\frac{dx}{4+x^2}.$ Calcular $\;(a)\;\displaystyle\int_{-\infty}^{+\infty}\frac{dx}{x^2+1}.\quad (b)\;\displaystyle\int_{-\infty}^{+\infty}\frac{dx}{x^2+4x+9}.$ Calcular $\;I=\displaystyle\int_1^{+\infty}\frac{dx}{x^p}$ con $p\in\mathbb{R}.$ Sean $f,g:[a,+\infty)$ continuas a trozos en todo intervalo $[a,b]$ y … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , , | Comentarios desactivados en Concepto de integral impropia en intervalos infinitos

Concepto de forma hermítica o hermitiana

Proporcionamos ejercicios sobre los conceptos de forma hermítica (o hermitiana) y el de forma cuadrática asociada. Enunciado Sea $E$ el espacio vectorial complejo de las funciones complejas continuas definidas en el intervalo cerrado real $[a,b].$ Demostrar que $$f:E\times E\to\mathbb{C},\quad f(x,y)=\int_a^bx(t)\;\overline{y(t)}\;dt.$$ … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Concepto de forma hermítica o hermitiana

Concepto de forma sesquilineal

Proporcionamos ejercicios sobre el concepto de forma sesquilineal. Enunciado Sea $M\in\mathbb{C}^{m\times n}$ y la aplicación $$f:\mathbb{C}^m\times \mathbb{C}^n\to\mathbb{C},\quad f(x,y)=x^tM\;\overline{y},$$ en donde $x,y$ representan vectores columna de $\mathbb{C}^m$ y $\mathbb{C}^n$ respectivamente. Demostrar que $f$ es forma sesquilineal. Sea $E$ el espacio vectorial … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Concepto de forma sesquilineal

Concepto de producto escalar complejo, espacio unitario

Proporcionamos ejercicios sobre los conceptos de producto escalar complejo y espacio unitario. Enunciado Demostrar que en todo espacio unitario $E$ y para todo $\lambda\in\mathbb{C},$ $x,y,z\in E$ se verifica $\begin{aligned}&a)\;\langle x,y+z\rangle=\langle x,y\rangle+\langle x,z\rangle.\\&b)\; \langle x,\lambda y\rangle=\overline{\lambda}\langle x,y\rangle.\\&c)\;\langle x,0\rangle=\langle 0, y\rangle=0.\end{aligned}$ Dados … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , , , | Comentarios desactivados en Concepto de producto escalar complejo, espacio unitario

Concepto de forma cuadrática

Proporcionamos ejercicios sobre el concepto de forma cuadrática. Enunciado Determinar las formas cuadráticas asociadas a las formas bilineales: $$f_1(x,y)=\begin{pmatrix}x_1,\;x_2\end{pmatrix}\begin{pmatrix}{2}&{4 }\\{-1 }&{7}\end{pmatrix}\begin{pmatrix}y_1\\{y_2}\end{pmatrix}.$$ $$f_2(x,y)=\begin{pmatrix}x_1,\;x_2\end{pmatrix}\begin{pmatrix}{2}&{-3 }\\{6 }&{7}\end{pmatrix}\begin{pmatrix}y_1\\{y_2}\end{pmatrix}.$$ $$f_3(x,y)=\begin{pmatrix}x_1,\;x_2\end{pmatrix}\begin{pmatrix}{2}&{3/2 }\\{3/2 }&{7}\end{pmatrix}\begin{pmatrix}y_1\\{y_2}\end{pmatrix}.$$ Se considera la forma cuadrática $q:\mathbb{R}^3\to \mathbb{R}:$ $$q(x_1,x_2,x_3)=x_1^2+7x_2^2-x_3^2+8x_1x_2+5x_1x_3-4x_2x_3.$$ Expresarla mediante una matriz simétrica … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Concepto de forma cuadrática