Archivo de la etiqueta: continuas

Funciones uniformemente continuas en espacios prehilbertianos

RESUMEN. Estudiamos algunas funciones uniformemente continuas en espacios prehilbertianos. Enunciado Sea $P$ un espacio prehilbertiano. Demostrar que para todo $y\in P$ las aplicaciones de $P$ en $\mathbb{K}:$ $$(a)\;F_y(x)=\langle x,y\rangle.\quad (b)\;G_y(x)=\langle y,x\rangle.\quad (c)\; N(x)=\|x\|.$$ son uniformemente continuas. Solución $(a)$ Si $y=0,$ … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Funciones uniformemente continuas en espacios prehilbertianos

Espacio prehilbertiano de las funciones continuas

RESUMEN. Demostramos el espacio de las funciones complejas en un intervalo cerrado es prehilbertiano pero no de Hilbert. Enunciado (a) Sea $P$ el espacio vectorial complejo de las funciones complejas continuas definidas en el intervalo cerrado real $[a,b].$ Es decir, … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Espacio prehilbertiano de las funciones continuas