Archivo de la etiqueta: cotas

Cotas para la derivada aritmética natural

Derivada aritmética (menú) Proporcionamos cotas para la derivada aritmética natural. Enunciado Demostrar que para todo entero positivo $n$ se verifica $n^{\prime}\le \dfrac{n\log_2n}{2}.$ Demostrar que si $n=2^k$ la cota es exacta Demostrar que si $n$ es el producto de $k$ factores, … Sigue leyendo

Publicado en Miscelánea matemática | Etiquetado , , , | Comentarios desactivados en Cotas para la derivada aritmética natural

Cotas de la longitud de una elipse

El objeto de este problema es encontrar cotas de la longitud de una elipse. Enunciado Demostrar que el cálculo de la longitud de una elipse se reduce al cálculo de la integral $$\int_0^{\pi/2}\sqrt{1+k^2\text{sen}^2\theta}\;d\theta.$$ Verificar que la integral del apartado anterior … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Cotas de la longitud de una elipse

Cotas de las raíces de un polinomio

En este problema, damos cotas de las raíces de un polinomio. Enunciado Sea $f(z)=a_nz^n+\ldots +a_1z+a_0\in\mathbb{C}[z]$ con $a_n\neq 0$ y $c$ una raíz de $f(z)$. Demostrar que $|c|\leq M$ siendo $$M=\max\left \{\left(n\left| \frac{a_{i-1}}{a_n}\right|\right)^{1/i}:i=1,\ldots,n\right\}.$$ Solución Supongamos que $\left|z\right|>M$, entonces $$\left|z\right|>\left(n\left|\dfrac{a_{i-1}}{a_n}\right|\right)^{\frac{1}{i}}\;(\forall i=1,\ldots,n)\Rightarrow \left|z\right|^i>n\dfrac{\left|a_{i-1}\right|}{\left|a_n\right|}\;\;(\forall … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Cotas de las raíces de un polinomio

Máximo, mínimo, cotas

Proporcionamos ejercicios sobre los conceptos de máximo, mínimo y cotas. Enunciado En $\mathbb{N}=\{0,1,2,\ldots\}$ con el orden usual $\leq,$ hallar, caso de existir los elementos mínimo y máximo. En $\mathbb{Z}^-=\{\ldots,-3,-2,-1\}$ con el orden usual $\leq,$ hallar, caso de existir los elementos … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Máximo, mínimo, cotas