Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: cotas
Cotas para la derivada aritmética natural
Derivada aritmética (menú) Proporcionamos cotas para la derivada aritmética natural. Enunciado Demostrar que para todo entero positivo $n$ se verifica $n^{\prime}\le \dfrac{n\log_2n}{2}.$ Demostrar que si $n=2^k$ la cota es exacta Demostrar que si $n$ es el producto de $k$ factores, … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado aritmética, cotas, derivada, natural
Comentarios desactivados en Cotas para la derivada aritmética natural
Cotas de la longitud de una elipse
El objeto de este problema es encontrar cotas de la longitud de una elipse. Enunciado Demostrar que el cálculo de la longitud de una elipse se reduce al cálculo de la integral $$\int_0^{\pi/2}\sqrt{1+k^2\text{sen}^2\theta}\;d\theta.$$ Verificar que la integral del apartado anterior … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado cotas, elipse, longitud
Comentarios desactivados en Cotas de la longitud de una elipse
Cotas de las raíces de un polinomio
En este problema, damos cotas de las raíces de un polinomio. Enunciado Sea $f(z)=a_nz^n+\ldots +a_1z+a_0\in\mathbb{C}[z]$ con $a_n\neq 0$ y $c$ una raíz de $f(z)$. Demostrar que $|c|\leq M$ siendo $$M=\max\left \{\left(n\left| \frac{a_{i-1}}{a_n}\right|\right)^{1/i}:i=1,\ldots,n\right\}.$$ Solución Supongamos que $\left|z\right|>M$, entonces $$\left|z\right|>\left(n\left|\dfrac{a_{i-1}}{a_n}\right|\right)^{\frac{1}{i}}\;(\forall i=1,\ldots,n)\Rightarrow \left|z\right|^i>n\dfrac{\left|a_{i-1}\right|}{\left|a_n\right|}\;\;(\forall … Sigue leyendo
Máximo, mínimo, cotas
Proporcionamos ejercicios sobre los conceptos de máximo, mínimo y cotas. Enunciado En $\mathbb{N}=\{0,1,2,\ldots\}$ con el orden usual $\leq,$ hallar, caso de existir los elementos mínimo y máximo. En $\mathbb{Z}^-=\{\ldots,-3,-2,-1\}$ con el orden usual $\leq,$ hallar, caso de existir los elementos … Sigue leyendo