Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: criterio
Criterio de divisivilidad entre $3$
RESUMEN. Demostramos un criterio de divisivilidad entre $3$ Enunciado Demostrar que un número natural es divisible entre $3$ si y sólo sí lo es la suma de sus dígitos. Solución Veamos que todo número tiene la misma congruencia módulo $3$ … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado 3, criterio, dibisivilidad
Comentarios desactivados en Criterio de divisivilidad entre $3$
Criterio de Eisenstein
Demostramos el criterio de Eisenstein y damos un ejemplo de aplicación. Enunciado Demostrar el criterio de Eisenstein: Sea $P(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0\in\mathbb{Z}[x].$ Supongamos que existe $p$ primo tal que $\quad (i)$ $p\not\mid a_n,\;p\mid a_{n-1},\ldots,p\mid a_0.$ $\quad (ii)$ $p^2\not\mid a_0.$ Entonces, $P(x)$ es irreducible … Sigue leyendo
Publicado en Álgebra
Etiquetado criterio, Eisenstein
Comentarios desactivados en Criterio de Eisenstein
Criterio de Cauchy para integrales impropias en intervalos infinitos
Enunciado Demostrar el criterio de Cauchy para integrales impropias en intervalos infinitos: Sea $f:[a,+\infty)\to\mathbb{R}$ continua a trozos en todo intervalo $[a,b].$ Demostrar que $$\int_a^{+\infty}f(x)\;dx \text{ es convergente}$$ $$\Leftrightarrow \forall \epsilon >0\;\exists b_0\text{ tal que } b’\ge b\ge b_0\Rightarrow \left|\int_b^{b’}f(x)\;dx\right|<\epsilon$$ Solución … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado Cauchy, criterio, impropias, infinitos, integrales, intervalos
Comentarios desactivados en Criterio de Cauchy para integrales impropias en intervalos infinitos
Series uniformemente convergentes. Criterio de Weierstrass
Aplicamos el criterio de Weierstrass para identificar series uniformemente convergentes. Enunciado Demostrar que la serie $\displaystyle\sum_{n=1}^{\infty}\frac{\operatorname{sen}^2x}{2^n+1}$ es uniformemente convergente en $\mathbb{R}.$ Demostrar que la serie $\displaystyle\sum_{n=1}^{\infty}\frac{e^{-nx^2}}{n^2+x^2}$ es uniformemente convergente en $\mathbb{R}.$ Sea $f(x)=\displaystyle\sum_{n=1}^{\infty}\frac{\operatorname{sen}nx}{n^3}.$ Demostrar que $\displaystyle\int_0^{\pi}f(x)\;dx=2\sum_{n=1}^{\infty}\frac{1}{(2n+1)^4}.$ Estudiar la convergencia de … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado convergentes, criterio, series, uniformemente, Weierstrass
Comentarios desactivados en Series uniformemente convergentes. Criterio de Weierstrass
Clasificación de formas cuadráticas
Proporcionamos ejercicios sobre clasificación de formas cuadráticas. Enunciado Clasificar la forma cuadrática $q:\mathbb{R}^3\to\mathbb{R}:$ $$q(x_1,x_2,x_3)=x_1^2+x_2^2+5x_3^2+2ax_1x_2-2x_1x_3+4x_2x_3\;\;(a\in\mathbb{R}).$$ Determinar para que valores de $a\in\mathbb{R}$ es definida positiva la forma cuadrática $$q:\mathbb{R}^3\to\mathbb{R},\quad q(x)=X^T\begin{bmatrix}{1}&{2}&{1}\\{2}&{6}&{2}\\{1}&{2}&{a}\end{bmatrix}X.$$ Solución Busquemos una matriz diagonal que represente a $q.$ $$\begin{bmatrix}{1}&{a}&{-1}\\{a}&{1}&{2}\\{-1}&{2}&{5}\end{bmatrix}\begin{matrix}\sim\\{F_2-aF_1}\\{F_3+F_1}\end{matrix}\begin{bmatrix}{1}&{a}&{-1}\\{0}&{1-a^2}&{2+a}\\{0}&{2+a}&{4}\end{bmatrix}$$ $$\begin{matrix}\sim\\{C_2-aC_1}\\{C_3+C_1}\end{matrix}\begin{bmatrix}{1}&{0}&{0}\\{0}&{1-a^2}&{2+a}\\{0}&{2+a}&{4}\end{bmatrix}.$$ Para … Sigue leyendo
Publicado en Álgebra
Etiquetado clasificación, criterio, cuadráticas, formas, Sylvester
Comentarios desactivados en Clasificación de formas cuadráticas