Archivo de la etiqueta: cuadrática

Concepto de forma cuadrática

Proporcionamos ejercicios sobre el concepto de forma cuadrática. Enunciado Determinar las formas cuadráticas asociadas a las formas bilineales: $$f_1(x,y)=\begin{pmatrix}x_1,\;x_2\end{pmatrix}\begin{pmatrix}{2}&{4 }\\{-1 }&{7}\end{pmatrix}\begin{pmatrix}y_1\\{y_2}\end{pmatrix}.$$ $$f_2(x,y)=\begin{pmatrix}x_1,\;x_2\end{pmatrix}\begin{pmatrix}{2}&{-3 }\\{6 }&{7}\end{pmatrix}\begin{pmatrix}y_1\\{y_2}\end{pmatrix}.$$ $$f_3(x,y)=\begin{pmatrix}x_1,\;x_2\end{pmatrix}\begin{pmatrix}{2}&{3/2 }\\{3/2 }&{7}\end{pmatrix}\begin{pmatrix}y_1\\{y_2}\end{pmatrix}.$$ Se considera la forma cuadrática $q:\mathbb{R}^3\to \mathbb{R}:$ $$q(x_1,x_2,x_3)=x_1^2+7x_2^2-x_3^2+8x_1x_2+5x_1x_3-4x_2x_3.$$ Expresarla mediante una matriz simétrica … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Concepto de forma cuadrática

Signatura de una forma cuadrática en un espacio euclídeo

Determinamos la signatura de una forma cuadrática en un espacio euclídeo $n$-dimensional. Enunciado Sea $E$ un espacio vectorial real euclídeo de dimensión $n$ y sea $u\in E$ un vector de norma $1$ $(\left\|{u}\right\|=1).$ Para cada número real $a$ se define … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , , | Comentarios desactivados en Signatura de una forma cuadrática en un espacio euclídeo