Menú
-
Entradas recientes
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: definición
Límites de funciones por la definición
Proporcionamos ejercicios de límites de funciones por la definición. Enunciado Demostrar que: $$a)\;\lim_{x\to 1}\;(2x+3)=5.\quad b)\; \lim_{x\to 2}\;\left(\frac{2}{3}x-1\right)=\frac{1}{3}.\quad c)\; \lim_{x\to 1/2}\;(-x-1)=-\frac{3}{2}.$$ Demostrar que $\;\;a)\;\displaystyle\lim_{x\to 0}x^2=0.\quad b)\;\lim_{x\to 0}x^3\operatorname{sen}x=0.$ Demostrar que: $\displaystyle\lim_{x\to 2}\;\left(x^2+x-2\right)=4.$ Demostrar que $\displaystyle\lim_{x\to 3} \frac{2}{x+1} =\frac{1}{2}.$ Demostrar que $\displaystyle\lim_{x\to +\infty}\frac{1}{x}=0.$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado definición, funciones, límites
Comentarios desactivados en Límites de funciones por la definición