Archivo de la etiqueta: derivación

Derivación de integrales dependientes de un parámetro

Demostramos los teoremas de derivación de integrales dependientes de un parámetro (tanto con límites de integración constantes como variables) y proporcionamos ejemplos de aplicación. Definición. Sean $[a,b]$ y $[\alpha,\beta]$ dos intervalos reales y $$f:[a,b]\times [\alpha,\beta]\to \mathbb{R},\quad (x,\lambda) \to f(x,\lambda)$$ una … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , | Comentarios desactivados en Derivación de integrales dependientes de un parámetro

Derivación paramétrica y límite

Enunciado 1. Calcular $\displaystyle\int_{0}^{+\infty}\frac{dt}{x^2+t^2}\quad (x>0).$ 2. Calcular $\displaystyle\int_{0}^{+\infty}\frac{dt}{(x^2+t^2)^{n+1}}.$ Indicación: derivar la integral respecto de un parámetro y razonar por inducción. 3. Calcular $\displaystyle\int_{0}^{+\infty}\frac{dt}{\left(1+\frac{t^2}{n}\right)^n}.$ 4. Como aplicación de lo anterior, calcular el límite: $$\displaystyle\lim_{n \to{+}\infty}\frac{1\cdot 3\cdot 5\cdot\ldots\cdot (2n-3)}{2\cdot 4\cdot\ldots\cdot (2n-2)}\cdot \sqrt{n}.$$ … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Derivación paramétrica y límite