Menú
-
Entradas recientes
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: desarrollo
Desarrollo de Taylor de orden $n$ de $f(x,y)=\log (x+y)$
Calculamos el desarrollo de Taylor de orden $n$ de $f(x,y)=\log (x+y)$ con resto. Enunciado Desarrollar la función $f(x,y)=\log (x+y)$ por la fórmula de Taylor de orden $n$ en un entorno de $(1,1).$ Solución Hallemos las primeras derivadas parciales de $f:$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $f(x y)=log (x+y)$, desarrollo, n, orden, Taylor
Comentarios desactivados en Desarrollo de Taylor de orden $n$ de $f(x,y)=\log (x+y)$
Desarrollo en serie de Laurent
Proporcionamos ejercicios de desarrollos en serie de Laurent. Enunciado Desarrollar en serie de Laurent la función $f(z)=\displaystyle\frac{1}{3z-7}$ en potencias enteras de $z.$ Desarrollar en serie de Laurent la función $f(z)=\displaystyle\frac{(4+i)z+3i-8}{z^2+z-6}$ en potencias enteras de $z.$ Desarrollar $f(z)=\displaystyle\frac{z}{(z+1)(z+2)}$ en una corona … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado desarrollo, Laurent, serie
Comentarios desactivados en Desarrollo en serie de Laurent