Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: dimensión
Todo subespacio de dimensión finita es cerrado
RESUMEN. Demostramos que todo subespacio de dimensión finita de un espacio normado es cerrado Enunciado Sea $E$ un espacio normado y $F$ un subespacio de $E$ de dimensión finita. Demostrar que $F$ es cerrado. Solución Sea $x\in\overline{F}$ y sea $(x_n)$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado cerrado, dimensión, finota, subespcio
Comentarios desactivados en Todo subespacio de dimensión finita es cerrado
Todo espacio normado de dimensión finita es de Banach
RESUMEN. Demostramos que todo espacio normado de dimensión finita es de Banach. Enunciado Demostrar que todo espacio normado de dimensión finita es de Banach Solución Sea $(E,\|\;\|)$ espacio normado de dimensión finita $N$ sobre $\mathbb{K}=\mathbb{R}$ o $\mathbb{K}=\mathbb{C}$ y sea $B=\{e_1,\ldots,e_N\}$ … Sigue leyendo
Espacios normados de dimensión finita
En el siguiente problema demostramos propiedades de los espacios normados de dimensión finita. Enunciado 1. Demostrar que todos los espacios normados $\left(E,\left\|\;\right\|_E\right)$ de dimensión finita dada $n$ sobre el cuerpo $\mathbb{K}$ ($\mathbb{K=\mathbb{R}}$ o $\mathbb{K=\mathbb{C}}$), son homeomorfos. 2. Sean $E$ y … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado dimensión, espacios, finita, normados
Comentarios desactivados en Espacios normados de dimensión finita
Teorema de la dimensión para espacios vectoriales
Demostramos el teorema de la dimensión para espacios vectoriales. Enunciado Sea $E$ espacio vectorial sobre el cuerpo $\mathbb{K}.$ Demostrar que todas las bases de $E$ tienen el mismo cardinal. Solución Demostraremos previamente el siguiente lema: LEMA. Sea $E$ espacio vectorial … Sigue leyendo
Publicado en Álgebra
Etiquetado dimensión, espacios, teorema, vectoriales
Comentarios desactivados en Teorema de la dimensión para espacios vectoriales
Propiedades de la dimensión
En los siguientes ejercicos aplicamos propiedades de la dimensión. Enunciado Demostrar que los siguientes vectores forman base de $\mathbb{R}^4$ $$(2,1,0,1),\;(0,1,2,2),\;(-2,1,1,2),\;(1,3,1,2).$$ Sean $E_1$ y $E_2$ subespacios de $E$ tales que $\dim E_1=4,$ $\dim E_2=5$ y $\dim E=7.$ Se pide hallar la … Sigue leyendo
Publicado en Álgebra
Etiquetado dimensión, propiedades
Comentarios desactivados en Propiedades de la dimensión