Menú
-
Entradas recientes
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: distancia
Equivalencia entre toda distancia y su acotada usual
RESUMEN. Demostramos que existe equivalencia entre toda distancia y su acotada usual. Enunciado Sea $d$ una distancia en un conjunto no vacío $X$ y sea $D(x,y)=\min\{1, d(x,y)\}$ la distancia acotada usual de $d.$ Demostrar que $d$ y $D$ son distancias … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado acotada, distancia, equivalencia, usual
Comentarios desactivados en Equivalencia entre toda distancia y su acotada usual
Distancia acotada usual
RESUMEN. Demostramos que la distancia acotada usual es efectivamente una distancia. Enunciado Sea $d$ una distancia en un conjunto no vacío $X.$ Demostrar que la función $D$ definida por $$D:X\times X\to [0,+\infty),\quad D(x,y)=\min\{1, d(x,y)\}$$ es una distancia. A la distancia … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado acotada, distancia, usual
Comentarios desactivados en Distancia acotada usual
Distancia de un plano y de una curva al origen
Enunciado Usando técnicas de cálculo diferencial, Calcular la mínima distancia del plano $\alpha:2x-y+2z=2$ al origen y el punto en el que dicha distancia mínima se obtiene. Calcular la mínima distancia del conjunto $$A= \{ (x,y,z): x^2+y^2=1,\; x+y+z=1 \} $$ al … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado curva, distancia, origen, plano
Comentarios desactivados en Distancia de un plano y de una curva al origen
Distancia $d(x,y)=|f(x)-f(y)|$ en los reales
Estudiamos propiedades de una métrica definida a partir de una función estrictamente creciente. Enunciado Sea $f:\mathbb{R}\to\mathbb{R}$ una función estrictamente creciente. Demostrar que $d(x,y)=\left|f(x)-f(y)\right|$ es una distancia en $\mathbb{R}.$ Demostrar que si $f$ no es continua, la distancia $d$ no es … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado creciente, distancia, estrictamente, función
Comentarios desactivados en Distancia $d(x,y)=|f(x)-f(y)|$ en los reales
Mínima distancia de un vector a un subespacio
Proporcionamos ejercicios sobre el concepto de mínima distancia de un vector a un subespacio. Enunciado En $\mathbb{R}^3$ con el producto escalar $$\left<(x_1,x_2,x_3),(y_1,y_2,y_3)\right>=x_1y_1+2x_2y_2+3x_3y_3,$$ hallar la distancia del vector $x=(1,1,1)$ al subespacio $F\equiv x_1+x_2+2x_3=0.$ Sea $E$ espacio euclídeo. Demostrar las propiedades de … Sigue leyendo
Publicado en Álgebra
Etiquetado distancia, mínima, subespacio, vector
Comentarios desactivados en Mínima distancia de un vector a un subespacio