Archivo de la etiqueta: distribución Poisson

Media y desviación típica de la distribución de Poisson

RESUMEN. Hallamos la media y desviación típica de la distribución de Poisson. Enunciado. Dada la distribución de Poisson: $$p(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}\quad (\lambda > 0,k=0,1,2,\ldots).$$ $(a)$ Hallar su media $\mu_X.$ $(b)$ Hallar su desviación típica $\sigma_X.$ Solución. $(a)$ Tenemos $$\mu_X=E[X]=\sum_{k=0}^{+\infty}p_kx_k=\sum_{k=0}^{+\infty}\frac{e^{-\lambda}\lambda^k}{k!}k=e^{-\lambda}\lambda\sum_{k=1}^{+\infty}\frac{\lambda^{k-1}}{(k-1)!}=$$ $$e^{-\lambda}\lambda\sum_{k=0}^{+\infty}\frac{\lambda^{k}}{k!}=e^{-\lambda}\lambda e^{\lambda}=\lambda.$$ $(b)$ … Sigue leyendo

Publicado en Miscelánea matemática | Etiquetado , , | Comentarios desactivados en Media y desviación típica de la distribución de Poisson