Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: e
El número e es trascendente
Demostramos que el número $e$ es trascendente. Teorema Demostrar que el número real $e$ es trascendente sobre $\mathbb{Q}$, es decir que no existe $p\in\mathbb{Q}[x]$ no nulo tal que $p(e)=0$. Demostración Sea $f\in\mathbb{R}[x]$ de grado $r$ y sea $$F(x)=f(x)+f^{\prime}(x)+f^{\prime\prime}(x)+\cdots+f^{(r)}(x).$$ Hallemos la … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado e, número, trascendente
Comentarios desactivados en El número e es trascendente
Número e y exponencial de una matriz
Se define la exponencial de una matriz como generalización de la exponencial real. Enunciado En la Enseñanza Media se define el número $e$ como el límite: $\displaystyle\lim_{m \to \infty}\left(1+\frac{1}{m}\right)^m,$ y de manera más general resulta ser $e^a=\displaystyle\lim_{m \to \infty}\left(1+\frac{1}{m}a\right)^m,$ donde … Sigue leyendo
Publicado en Álgebra
Etiquetado e, exponencial, matriz, número
Comentarios desactivados en Número e y exponencial de una matriz
El número e es irracional
En este problema se demuestra la irracionalidad del número e. Enunciado Se sabe que número $e$ de Euler se define como el límite: $$e=\displaystyle\lim_{n\to{+}\infty} \left(1+\dfrac{1}{n}\right)^n,$$ y que dicho número se puede expresar como la suma de una serie: $$e=1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+\ldots=\displaystyle\sum_{k=0}^{+\infty}\dfrac{1}{k!}.\qquad (*)$$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado e, irracional, número
Comentarios desactivados en El número e es irracional