Menú
-
Entradas recientes
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: ecuación
Edo $y^{\prime\prime}=x(y^\prime)^3$
RESUMEN. Resolvemos una ecuación diferencial de segundo orden. Enunciado Resolver la ecuación diferencial de segundo orden $y^{\prime\prime}=x(y^\prime)^3.$ Solución Denotando $p=y^\prime$ queda $p^\prime=xp^3$ o bien $dp/dx=xp^3$ o bien $dp/p^3=xdx$, ecuación de variables separadas. Integrando $$\int \frac{dp}{p^3}=\int xdx,\quad -\frac{1}{p^2}=\frac{x^2}{2}+C,$$ $$-\frac{1}{p^2}=x^2+C,\quad p^2=\frac{1}{-x^2-C},$$ $$p=\frac{1}{\sqrt{C_1-x^2}},\quad … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado diferencial, ecuación, orden, segundo
Comentarios desactivados en Edo $y^{\prime\prime}=x(y^\prime)^3$
Ecuación en diferencias completa
RESUMEN. Proporcionamos un método para la resolución de la ecuación en diferencias completa. Recordamos que una ecuación en diferencias lineal de orden $k$ con coeficientes constantes es una expresión de la forma $$x_{n+k}+a_1x_{n+k-1}+\ldots +a_{k-1}x_{n+1}+a_kx_n=b(n)$$ en donde $a_1,a_2,\ldots,a_k$ son números reales … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado completa, diferencias, ecuación
Comentarios desactivados en Ecuación en diferencias completa
Ecuación en diferencias homogénea
RESUMEN. Proporcionamos un método para la resolución de la ecuación en diferencias homogénea. Definición. Se llama ecuación en diferencias lineal de orden $k$ con coeficientes constantes a toda expresión de la forma $$x_{n+k}+a_1x_{n+k-1}+\ldots +a_{k-1}x_{n+1}+a_kx_n=b(n)\qquad (1)$$ en donde $a_1,a_2,\ldots,a_k$ son números … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado diferencias, ecuación, homogénea
Comentarios desactivados en Ecuación en diferencias homogénea
Ecuación de Verhulst
Resolvemos la ecuación de Verhulst. Definición. A la ecuación diferencial $$\frac{dP}{dt}=rP\left(1 – \frac{P}{K}\right)$$ se la llama ecuación de Verhulst. $P$ es la variable depenciente (población), $t$ la independiente (tiempo), $r$ es el coeficiente de la razón de crecimiento de la … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado ecuación, Verhulst
Comentarios desactivados en Ecuación de Verhulst
Ecuación de cuarto grado
Propocionamos un método para la resolución de la ecuación de cuaroo grado o cuártica (Método de Ferrari). Nota. Es claro que toda ecuación cuártica o de cuarto grado con coeficientes complejos se puede expresar en la forma $$(E):\;x^4+2ax^3+bx^2+2cx+d=0,\;(a,b,c,d\in\mathbb{C}).$$ Teorema. La … Sigue leyendo