Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: elementales
Transformaciones de Möbius elementales
RESUMEN. Demostramos que toda transformación de Möbius es composición de transformaciones de Möbius elementales. Sean la transformaciones $$ \text{(i) Traslaciones. } z\mapsto a+z, (a\in\mathbb C)\quad \text{(ii) Giros. } z\mapsto e^{i\alpha}z, (\alpha \in \mathbb R)$$ $$\begin{aligned}& \text{(iii) Dilataciones. } z\mapsto rz, … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado elementales, Möbius, transformaciones
Comentarios desactivados en Transformaciones de Möbius elementales
Diagonalización de formas cuadráticas por transformaciones elementales
Proporcionamos ejercicios sobre diagonalización de formas cuadráticas por transformaciones elementales. Enunciado Se considera la forma cuadrática $q:\mathbb{R}^3\to\mathbb{R}$ cuya expresión en una determinada base $B$ es: $$q(x)=x_1^2+5x_2^2+8x_3^2+4x_1x_2-6x_1x_3-8x_2x_3.$$ Diagonalizarla y como aplicación descomponerla en suma de cuadrados independientes. Se considera la forma … Sigue leyendo
Publicado en Álgebra
Etiquetado cuadráticas, diagonalización, elementales, formas, transformaciones
Comentarios desactivados en Diagonalización de formas cuadráticas por transformaciones elementales
Continuidad de las funciones elementales
Proporcionamos la manera de estudiar la continuidad de las funciones elementales. Enunciado Determinar donde son continuas las siguientes funciones elementales: $$(a)\;\;f(x)=\dfrac{3x-2}{x^2-5x+6}.\qquad (b)\;\;g(x)=\sqrt{-2x^2+10x-12}.$$ Determinar donde son continuas las siguientes funciones elementales: $$(a)\;f(x)=\sqrt[3]{\dfrac{1}{x^2+x+1}}.\quad (b)\;f(x)=\dfrac{1}{\cos x}.$$ Estudiar la continuidad de la función elemental … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado continuidad, elementales, funciones
Comentarios desactivados en Continuidad de las funciones elementales