Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: endomorfismos
Endomorfismos diagonalizables
Proporcionamos ejercicios sobre endomorfismos diagonalizables. Enunciado Sea $E$ un espacio vectorial real y $f:E\to E$ el endomorfismo cuya matriz en una determinada base $B=\{u_1,u_2\}$ es $$A=\begin{bmatrix}{2}&{2}\\{1}&{3}\end{bmatrix}.$$ $(a)$ Estudiar si es diagonalizable. $(b)$ En caso afirmativo, encontrar una base de $E$ … Sigue leyendo
Publicado en Álgebra
Etiquetado diagonalizables, endomorfismos
Comentarios desactivados en Endomorfismos diagonalizables
Anillo de los endomorfismos y grupo lineal
Construimos el anillo de los endomorfismos y el grupo lineal. Enunciado Demostrar que $\left(\operatorname{End}_{\mathbb{K}}(E),+,\circ \right)$ es un anillo unitario, en donde $+$ es la suma habitual de aplicaciones lineales y $\circ$ la composición. Sea $E$ espacio vectorial sobre el cuerpo … Sigue leyendo
Publicado en Álgebra
Etiquetado anillo, endomorfismos, grupo, lineal
Comentarios desactivados en Anillo de los endomorfismos y grupo lineal
Cambio de base en endomorfismos, matrices semejantes
Proporcionamos ejercicios sobre cambio de base en endomorfismos y matrices semejantes. Enunciado Sea $f$ el endomorfismo en $\mathbb{R}^3$ cuya matriz en la base canónica $B$ es $$A=\begin{bmatrix}{2}&{0}&{1}\\{0}&{1}&{-1}\\{2}&{-1}&{2}\end{bmatrix}.$$ Hallar la matriz de $f$ en la base $B’=\{u_1,u_2,u_3\},$ siendo $u_1=(1,1,1),$ $u_2=(1,2,2),$ $u_3=(2,3,1).$ … Sigue leyendo
Publicado en Álgebra
Etiquetado base, cambio, endomorfismos, matrices, semejantes
Comentarios desactivados en Cambio de base en endomorfismos, matrices semejantes
Clasificación de una familia de endomorfismos
Efectuamos la clasificación de una familia de endomorfismos que depende de un parámetro. Enunciado Se consideran los homomorfismos $f_{\lambda}$ de un espacio $V_3(\mathbb{R})$ definidos por las ecuaciones $\left \{ \begin{matrix}f_{\lambda}(e_1)=e_1+e_2+\lambda e_3\\f_{\lambda}(e_2)=e_1+\lambda e_2+e_3\\f_{\lambda}(e_1)=e_1+e_2+\lambda^2 e_3,\end{matrix}\right.$ donde $\lambda\in\mathbb{R}$ y $B=\{e_1,e_2,e_3\}$ es una base … Sigue leyendo
Publicado en Álgebra
Etiquetado clasificación, endomorfismos
Comentarios desactivados en Clasificación de una familia de endomorfismos