Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: endomorfismos
Endomorfismos diagonalizables
Proporcionamos ejercicios sobre endomorfismos diagonalizables. Enunciado Sea $E$ un espacio vectorial real y $f:E\to E$ el endomorfismo cuya matriz en una determinada base $B=\{u_1,u_2\}$ es $$A=\begin{bmatrix}{2}&{2}\\{1}&{3}\end{bmatrix}.$$ $(a)$ Estudiar si es diagonalizable. $(b)$ En caso afirmativo, encontrar una base de $E$ … Sigue leyendo
Publicado en Álgebra
Etiquetado diagonalizables, endomorfismos
Comentarios desactivados en Endomorfismos diagonalizables
Anillo de los endomorfismos y grupo lineal
Construimos el anillo de los endomorfismos y el grupo lineal. Enunciado Demostrar que $\left(\operatorname{End}_{\mathbb{K}}(E),+,\circ \right)$ es un anillo unitario, en donde $+$ es la suma habitual de aplicaciones lineales y $\circ$ la composición. Sea $E$ espacio vectorial sobre el cuerpo … Sigue leyendo
Publicado en Álgebra
Etiquetado anillo, endomorfismos, grupo, lineal
Comentarios desactivados en Anillo de los endomorfismos y grupo lineal
Cambio de base en endomorfismos, matrices semejantes
Proporcionamos ejercicios sobre cambio de base en endomorfismos y matrices semejantes. Enunciado Sea $f$ el endomorfismo en $\mathbb{R}^3$ cuya matriz en la base canónica $B$ es $$A=\begin{bmatrix}{2}&{0}&{1}\\{0}&{1}&{-1}\\{2}&{-1}&{2}\end{bmatrix}.$$ Hallar la matriz de $f$ en la base $B’=\{u_1,u_2,u_3\},$ siendo $u_1=(1,1,1),$ $u_2=(1,2,2),$ $u_3=(2,3,1).$ … Sigue leyendo
Publicado en Álgebra
Etiquetado base, cambio, endomorfismos, matrices, semejantes
Comentarios desactivados en Cambio de base en endomorfismos, matrices semejantes
Clasificación de una familia de endomorfismos
Efectuamos la clasificación de una familia de endomorfismos que depende de un parámetro. Enunciado Se consideran los homomorfismos $f_{\lambda}$ de un espacio $V_3(\mathbb{R})$ definidos por las ecuaciones $\left \{ \begin{matrix}f_{\lambda}(e_1)=e_1+e_2+\lambda e_3\\f_{\lambda}(e_2)=e_1+\lambda e_2+e_3\\f_{\lambda}(e_1)=e_1+e_2+\lambda^2 e_3,\end{matrix}\right.$ donde $\lambda\in\mathbb{R}$ y $B=\{e_1,e_2,e_3\}$ es una base … Sigue leyendo
Publicado en Álgebra
Etiquetado clasificación, endomorfismos
Comentarios desactivados en Clasificación de una familia de endomorfismos