Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: enésima
Límite de una sucesión por potencia enésima de una matriz
Calculamos el límite de una sucesión numérica usando la potencia enésima de una matriz. Enunciado Dada la sucesión $x_n$ tal que $x_1=1,x_2=2$ y $x_{n+2}=\dfrac{1}{2}\left(x_n+x_{n+1}\right)$ probar que $\displaystyle\lim_{n \to{+}\infty}{x_n}=\frac{5}{3}.$ Enunciado Podemos escribir $$\underbrace{\begin{bmatrix}{x_{n+2}}\\{x_{n+1}}\end{bmatrix}}_{X_{n+2}}=\underbrace{\begin{bmatrix}{1/2}&{1/2}\\{1}&{0}\end{bmatrix}}_{A}\underbrace{\begin{bmatrix}{x_{n+1}}\\{x_{n}}\end{bmatrix}}_{X_{n+1.}}$$ Por tanto, $X_{n+2}=AX_{n+1}=A^2X_{n}=\ldots =A^nX_2=A^n\begin{bmatrix}{2}\\{1}\end{bmatrix}.$ Es decir, $$\lim_{n \to{+}\infty}\begin{bmatrix}{x_{n+2}}\\{x_{n+1}}\end{bmatrix}=\lim_{n … Sigue leyendo
Derivada enésima de la función seno
Demostramos por inducción la fórmula de la derivada enésima de la función seno. Enunciado Demostrar por inducción que si $f(x)=\text{sen }x,$ entonces $$f^{(n)}(x)=\text{sen}\left(x+\dfrac{n\pi}{2}\right),$$ en donde $f^{(n)}(x)$ representa la derivada enésima de $f(x).$ Solución Recordemos las fórmulas de trigonometría: $$\text{sen }(a+ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado derivada, enésima, función, seno
Comentarios desactivados en Derivada enésima de la función seno
Potencia enésima de una matriz por diagonalización
Proporcionamos ejercicios sobre el cálculo de la potencia enésima de una matriz por diagonalización. Enunciado Sea $A$ una matriz cuadrada de orden $m$ con elementos en un cuerpo $\mathbb{K}$ y diagonalizable. Deducir la fórmula para $ A^n $ en función … Sigue leyendo
Publicado en Álgebra
Etiquetado diagonalización, enésima, matriz, potencia
Comentarios desactivados en Potencia enésima de una matriz por diagonalización
Potencia enésima de matrices por binomio de Newton
Proporcionamos fórmula del binomio de Newton para la potencia enésima de la suma de dos matrices que conmutan. Enunciado Sean $A,B\in\mathbb{K}^{m\times m}$ dos matrices que conmutan, es decir $AB=BA.$ Demostrar por inducción que se verifica la fórmula del binomio de … Sigue leyendo
Potencia enésima por forma de Jordan
Proporcionamos un ejemplo de cálculo de la potencia enésima de una matriz mediante su forma de Jordan. Enunciado Se considera la matriz $A=\begin{bmatrix}{2}&{6}&{-15}\\{1}&{1}&{-5}\\{1}&{2}&{-6}\end{bmatrix}\;.$ Determinar la forma canónica de Jordan $J$ de $A$ y una matriz $P$ invertible tal que $P^{-1}AP=J.$ … Sigue leyendo