Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: enteros
Matrices cuadradas invertibles con coeficientes enteros
Enunciado Sea $\sum_n=\mathbb{Z}^{n\times n}$ el conjunto de las matrices cuadradas de orden $n$ con coeficientes en $\mathbb{Z}.$ Demostrar que una condición necesaria y suficiente para que una matrix $M\in \sum_n$ admita una inversa en $\sum_n$ es que $\det M=\pm 1.$ … Sigue leyendo
Publicado en Álgebra
Etiquetado coeficientes, cuadradas, enteros, invertibles, matrices
Comentarios desactivados en Matrices cuadradas invertibles con coeficientes enteros
Máximo común divisor en los enteros de Gauss
Demostramos que el anillo de los enteros de Gauss es euclídeo y hallamos un máximo común divisor. Enunciado Sea $\mathbb{Z}[i]=\{a+bi:a\in\mathbb{Z},b\in\mathbb{Z}\}$ con las operaciones usuales de suma y producto de complejos. Se pide: Demostrar que $\mathbb{Z}[i]$ es anillo conmutativo y unitario. … Sigue leyendo
Producto de enteros que son suma de cuatro cuadrados de enteros
Enunciado Demostrar que el producto de dos números enteros, cada uno de ellos suma de cuatro cuadrados de enteros, es también la suma de cuatro cuadrados de enteros. Sugerencia: considerar determinantes de la forma $$\det \begin{bmatrix} z & -w \\\overline{w} … Sigue leyendo
Anillo de los enteros de Gauss
Estudiamos el anillo de los enteros de Gauss. Enunciado Sea $\mathbb{Z}[i]=\{a+bi:a\in\mathbb{Z},b\in\mathbb{Z}\}$ con las operaciones usuales de suma y producto de complejos. Se pide: Demostrar que $\mathbb{Z}[i]$ es anillo conmutativo y unitario (se llama anillo de los enteros de Gauss). Hallar … Sigue leyendo