Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: espacios
Separación de puntos y espacios de Hausdorff
RESUMEN. Demostramos una condición suficiente para que un espacio sea de Hausdorff via separación de puntos de familia de funciones continuas. Enunciado Sean $X$ e $Y$ conjuntos y una clase de aplicaciones $$\mathcal{F}=\{f_i:X\to Y, i\in I\}.$$ Se dice que $\mathcal{F}$ … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado espacios, Hausdorff, puntos, separación
Comentarios desactivados en Separación de puntos y espacios de Hausdorff
Espacios topológicos finitos metrizables
RESUMEN. Demostramos que un espacio topológico finito es metrizable si y sólo si su topología es la discreta. Enunciado Sea $(X,T)$ un espacio topológico con $X$ finito. Demostrar que $(X,T)$ es metrizable si y sólo si $T$ es la topología … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado espacios, finitos, metrizables, topológicos
Comentarios desactivados en Espacios topológicos finitos metrizables
Caracterización de espacios topológicos normales
RESUMEN. Proporcionamos una caracterización de los espacios topológicos normales Teorema Sea $X$ un espacio toplógico. Las siguienres afirmaciones son equivalentes: (i) $X$ es normal. (ii) Si $H$ es un conjunto abierto que contiene al conjunto cerrado $F$, entonces existe un … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado caracterización, espacios, normales, topológicos
Comentarios desactivados en Caracterización de espacios topológicos normales
Conjuntos acotados en espacios métricos
RESUMEN. Definimos el concepto de conjunto acotado en espacios métricos y damos dos ejemplos de aplicación. Enunciado Sea $(X,d)$ un espacio métrico y $A\subset X$ no vacío. Se dice que $A$ está acotado si existe una bola $B(p,r)$ en $X$ … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado acotados, conjuntos, espacios, métricos
Comentarios desactivados en Conjuntos acotados en espacios métricos
Espacios $T_4$ y metrizables
RESUMEN. Demostramos que todo espacio metrizable es $T_4.$ El recíproco no es cierto. Teorema. Todo espacio metrizable es normal. Demostración. Sea $X$ metrizable con distancia $d.$ Sean $A,B$ subconjuntos cerrados disjuntos de $X.$ Para cada $a\in A$ elijamos una bola … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado espacios, metrizables, T_4
Comentarios desactivados en Espacios $T_4$ y metrizables