Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: factorización
Factorización canónica de una aplicación
RESUMEN. Construimos la factorización canónica de una aplicación. Enunciado Sean $A$ y $B$ dos conjuntos no vacíos y $f:A\to B$ una aplicación. (1) Demostrar que la relación en $A$: $$xR y\Leftrightarrow f(x)=f(y)$$ es de equivalencia. Determinar el conjunto cociente $A/R$. … Sigue leyendo
Publicado en Álgebra
Etiquetado aplicación, canónica, factorización
Comentarios desactivados en Factorización canónica de una aplicación
Derivada aritmética en dominios de factorización única
Derivada aritmética (menú) Extendemos la definición de derivada aritmética a dominios de factorización única. Enunciado Sea $D$ un dominio de factorización única y elijamos en $D$ los elementos irreducibles que son «positivos», es decir elijamos un conjunto $\mathcal{P}$ de elementos … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado aritmética, derivada, dominios, factorización, única
Comentarios desactivados en Derivada aritmética en dominios de factorización única
Factorización en $\mathbb{C} [x]$ de $p(x)=(x+1)^n+(x-1)^n$
Enunciado Descomponer $p(x)=(x+1)^n+(x-1)^n \in \mathbb{C}[x]$ en factores lineales. Solución Hallemos las raíces complejas de $p(x).$ Tenemos $$p(x)=0\Leftrightarrow (x+1)^n+(x-1)^n=0\Leftrightarrow{}\left(\displaystyle\frac{x+1}{x-1}\right)^n=-1$$ $$\Leftrightarrow{}\dfrac{x+1}{x-1}=\sqrt[ n]{-1}=\sqrt[ n]{e^{\pi i}}=e^{\left(\frac{\pi}{n}+\frac{2k\pi}{n}\right)i}=z_k,\; (k=0,1,\ldots, n-1).$$ Despejando $x$ obtenemos las raíces $$x_k=\dfrac{z_k+1}{z_k-1}=\dfrac{e^{\left(\frac{\pi}{n}+\frac{2k\pi}{n}\right)i}+1}{e^{\left(\frac{\pi}{n}+\frac{2k\pi}{n}\right)i}-1}.$$ Llamando $\alpha=\pi/n+2k\pi/n$ tenemos $$x_k=\dfrac{e^{\alpha i}+1}{e^{\alpha i}-1}=\dfrac{e^{(-\alpha/2)i}}{e^{(-\alpha/2)i}}\cdot \dfrac{e^{\alpha i}+1}{e^{\alpha i}-1}=\dfrac{e^{(\alpha/2) i}+e^{(-\alpha/2)i}}{e^{(\alpha/2) … Sigue leyendo
Publicado en Álgebra
Etiquetado $mathbb{C} [x]$, $p(x)=(x+1)^n+(x-1)^n$, factorización
Comentarios desactivados en Factorización en $\mathbb{C} [x]$ de $p(x)=(x+1)^n+(x-1)^n$
Factorización canónica de la función seno
Proponemos como ejemplo de factorización canónica, a la función seno. Enunciado Efectuar la factorización canónica de la aplicación $\;f:\mathbb{R}\to \mathbb{R},$ $\;f(x)=\text{sen }x.$ Solución La relación de equivalencia $\sim$ asociada a la aplicación $f$ es $s\sim t$ $\Leftrightarrow$ $f(s)=f(t),$ o bien … Sigue leyendo
Publicado en Álgebra
Etiquetado canónica, factorización, función, seno
Comentarios desactivados en Factorización canónica de la función seno
Factorización de polinomios
Proporcionamos ejemplos de factorización de polinomios en producto de irreducibles. Enunciado Descomponer el polinomio $f(x)=x^6+1$ en producto de factores irreducibles $a)$ En $\mathbb{C}[x].\quad$ $b)$ En $\mathbb{R}[x].$ Descomponer el polinomio $f(x)=x^4-10x^2+1$ en producto de factores irreducibles $a)$ En $\mathbb{C}[x].\quad$ $b)$ En … Sigue leyendo
Publicado en Álgebra
Etiquetado factorización, polinomios
Comentarios desactivados en Factorización de polinomios