Menú
-
Entradas recientes
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: factorización
Factorización canónica de una aplicación
RESUMEN. Construimos la factorización canónica de una aplicación. Enunciado Sean $A$ y $B$ dos conjuntos no vacíos y $f:A\to B$ una aplicación. (1) Demostrar que la relación en $A$: $$xR y\Leftrightarrow f(x)=f(y)$$ es de equivalencia. Determinar el conjunto cociente $A/R$. … Sigue leyendo
Publicado en Álgebra
Etiquetado aplicación, canónica, factorización
Comentarios desactivados en Factorización canónica de una aplicación
Derivada aritmética en dominios de factorización única
Derivada aritmética (menú) Extendemos la definición de derivada aritmética a dominios de factorización única. Enunciado Sea $D$ un dominio de factorización única y elijamos en $D$ los elementos irreducibles que son «positivos», es decir elijamos un conjunto $\mathcal{P}$ de elementos … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado aritmética, derivada, dominios, factorización, única
Comentarios desactivados en Derivada aritmética en dominios de factorización única
Factorización en $\mathbb{C} [x]$ de $p(x)=(x+1)^n+(x-1)^n$
Enunciado Descomponer $p(x)=(x+1)^n+(x-1)^n \in \mathbb{C}[x]$ en factores lineales. Solución Hallemos las raíces complejas de $p(x).$ Tenemos $$p(x)=0\Leftrightarrow (x+1)^n+(x-1)^n=0\Leftrightarrow{}\left(\displaystyle\frac{x+1}{x-1}\right)^n=-1$$ $$\Leftrightarrow{}\dfrac{x+1}{x-1}=\sqrt[ n]{-1}=\sqrt[ n]{e^{\pi i}}=e^{\left(\frac{\pi}{n}+\frac{2k\pi}{n}\right)i}=z_k,\; (k=0,1,\ldots, n-1).$$ Despejando $x$ obtenemos las raíces $$x_k=\dfrac{z_k+1}{z_k-1}=\dfrac{e^{\left(\frac{\pi}{n}+\frac{2k\pi}{n}\right)i}+1}{e^{\left(\frac{\pi}{n}+\frac{2k\pi}{n}\right)i}-1}.$$ Llamando $\alpha=\pi/n+2k\pi/n$ tenemos $$x_k=\dfrac{e^{\alpha i}+1}{e^{\alpha i}-1}=\dfrac{e^{(-\alpha/2)i}}{e^{(-\alpha/2)i}}\cdot \dfrac{e^{\alpha i}+1}{e^{\alpha i}-1}=\dfrac{e^{(\alpha/2) i}+e^{(-\alpha/2)i}}{e^{(\alpha/2) … Sigue leyendo
Publicado en Álgebra
Etiquetado $mathbb{C} [x]$, $p(x)=(x+1)^n+(x-1)^n$, factorización
Comentarios desactivados en Factorización en $\mathbb{C} [x]$ de $p(x)=(x+1)^n+(x-1)^n$
Factorización canónica de la función seno
Proponemos como ejemplo de factorización canónica, a la función seno. Enunciado Efectuar la factorización canónica de la aplicación $\;f:\mathbb{R}\to \mathbb{R},$ $\;f(x)=\text{sen }x.$ Solución La relación de equivalencia $\sim$ asociada a la aplicación $f$ es $s\sim t$ $\Leftrightarrow$ $f(s)=f(t),$ o bien … Sigue leyendo
Publicado en Álgebra
Etiquetado canónica, factorización, función, seno
Comentarios desactivados en Factorización canónica de la función seno
Factorización de polinomios
Proporcionamos ejemplos de factorización de polinomios en producto de irreducibles. Enunciado Descomponer el polinomio $f(x)=x^6+1$ en producto de factores irreducibles $a)$ En $\mathbb{C}[x].\quad$ $b)$ En $\mathbb{R}[x].$ Descomponer el polinomio $f(x)=x^4-10x^2+1$ en producto de factores irreducibles $a)$ En $\mathbb{C}[x].\quad$ $b)$ En … Sigue leyendo
Publicado en Álgebra
Etiquetado factorización, polinomios
Comentarios desactivados en Factorización de polinomios