Archivo de la etiqueta: Fibonacci

Determinante y sucesión de Fibonacci

Relacionamos un determinante con la sucesión de Fibonacci. Enunciado Sea $1,2,3,5,8,13,\ldots$ la sucesión de Fibonacci y consideremos la matriz: $$A_n=\begin{bmatrix}{\;\;1}&{\;\;1}&{0}&{0}&{\ldots}&{\;\;0}&{0}\\{-1}&{\;\;1}&{1}&{0}&{\ldots}&{\;\;0}&{0}\\{\;\;0}&{-1}&{1}&{1}&{\ldots}&{\;\;0}&{0}\\{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\vdots}\\{\;\;0}&{\;\;0}&{0}&{0}&{\ldots}&{-1}&{1}\end{bmatrix}.$$ Probar que $\det A_n$ coincide con el termino enésimo de la sucesión. Solución La sucesión de Fibonacci $\{x_n\}$ está determinada … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Determinante y sucesión de Fibonacci

Sucesión de Fibonacci

Estudiamos algunas propiedades de la sucesión de Fibonacci. Enunciado Consideremos la sucesión de Fibonacci, esto es $\left\{F_n\right\}_{n=0,1,2,\ldots}$ tal que: $$F_0=F_1=1,\quad F_{n+2}=F_n+F_{n+1}.\quad (*)$$ Es conocido que existe: $\displaystyle\lim_{n \to{+}\infty}{\dfrac{F_{n+1}}{F_n}}.$ Usando las condiciones $(*)$, calcúlese justificadamente dicho límite. Considérese la serie $\sum_{n=0}^{+\infty}F_nx^n$. … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , | Comentarios desactivados en Sucesión de Fibonacci