Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: finita
Todo espacio normado de dimensión finita es de Banach
RESUMEN. Demostramos que todo espacio normado de dimensión finita es de Banach. Enunciado Demostrar que todo espacio normado de dimensión finita es de Banach Solución Sea $(E,\|\;\|)$ espacio normado de dimensión finita $N$ sobre $\mathbb{K}=\mathbb{R}$ o $\mathbb{K}=\mathbb{C}$ y sea $B=\{e_1,\ldots,e_N\}$ … Sigue leyendo
Límite de la suma finita $\displaystyle \sum_{k=1}^n\frac{be^{\frac{bk}{n}}}{n}$
RESUMEN. Hallamos el límite de una suma finita por cálculo directo y por sumas de Riemann. Enunciado. $1)$ Calcular la suma finita $\displaystyle \sum_{k=1}^n\frac{be^{\frac{k}{n}}}{n}\;\; (b\in\mathbb{R})$. $2)$ Calcular $L=\displaystyle\lim_{n\to +\infty}\sum_{k=1}^n\frac{be^{\frac{k}{n}}}{n}.$ $3)$ Calcular el límite anterior por sumas de Riemann. Solución. $1)$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado finita, límite, suma
Comentarios desactivados en Límite de la suma finita $\displaystyle \sum_{k=1}^n\frac{be^{\frac{bk}{n}}}{n}$
Extensión finita y algebraica
Definimos los conceptos de extensión finita y algebraica y demostramos que toda extensión finita es algebraica. También proporcionamos un contraejemplo que prueba que el recíproco es falso. Enunciado Sea $K/k$ una extensión de cuerpos. Se dice que $K$ es extensión … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado algebraica, extensión, finita
Comentarios desactivados en Extensión finita y algebraica
Cuerpo infinito con característica finita
Enunciado Construir un cuerpo infinito con característica finita. Solución Sea $\mathbb{K}$ un cuerpo, y sea $\mathbb{K}[[X]]$ el conjunto de las series formales $$\mathbb{K}[[X]]=\left\{\sum_{n\ge 0}a_nX^n:a_n\in\mathbb{K}\right\}.$$ Sabemos que $\mathbb{K}[[X]]$ es un dominio de integridad con las operaciones $$\sum_{n\ge 0}a_nX^n+\sum_{n\ge 0}b_nX^n=\sum_{n\ge 0}(a_n+b_n)X^n,$$ $$\left(\sum_{n\ge … Sigue leyendo
Publicado en Álgebra
Etiquetado característica, cuerpo, finita, infinito
Comentarios desactivados en Cuerpo infinito con característica finita
Espacios normados de dimensión finita
En el siguiente problema demostramos propiedades de los espacios normados de dimensión finita. Enunciado 1. Demostrar que todos los espacios normados $\left(E,\left\|\;\right\|_E\right)$ de dimensión finita dada $n$ sobre el cuerpo $\mathbb{K}$ ($\mathbb{K=\mathbb{R}}$ o $\mathbb{K=\mathbb{C}}$), son homeomorfos. 2. Sean $E$ y … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado dimensión, espacios, finita, normados
Comentarios desactivados en Espacios normados de dimensión finita