Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: formas
Suma directa de las formas bilineales simétricas y antisimétricas
Demostramos que el espacio vectorial $\mathcal{B}(E)$ de las formas bilneales es suma directa de los subespacios de las simétricas y antisimétricas. Enunciado Sea $E$ espacio vectorial sobre el cuerpo $\mathbb{K}$ y $\mathcal{B}(E)$ el espacio vectorial de las formas bilineales de … Sigue leyendo
Publicado en Álgebra
Etiquetado antisimétricas, bilineales, directa, formas, simétricas, suma
Comentarios desactivados en Suma directa de las formas bilineales simétricas y antisimétricas
Clasificación de formas cuadráticas
Proporcionamos ejercicios sobre clasificación de formas cuadráticas. Enunciado Clasificar la forma cuadrática $q:\mathbb{R}^3\to\mathbb{R}:$ $$q(x_1,x_2,x_3)=x_1^2+x_2^2+5x_3^2+2ax_1x_2-2x_1x_3+4x_2x_3\;\;(a\in\mathbb{R}).$$ Determinar para que valores de $a\in\mathbb{R}$ es definida positiva la forma cuadrática $$q:\mathbb{R}^3\to\mathbb{R},\quad q(x)=X^T\begin{bmatrix}{1}&{2}&{1}\\{2}&{6}&{2}\\{1}&{2}&{a}\end{bmatrix}X.$$ Solución Busquemos una matriz diagonal que represente a $q.$ $$\begin{bmatrix}{1}&{a}&{-1}\\{a}&{1}&{2}\\{-1}&{2}&{5}\end{bmatrix}\begin{matrix}\sim\\{F_2-aF_1}\\{F_3+F_1}\end{matrix}\begin{bmatrix}{1}&{a}&{-1}\\{0}&{1-a^2}&{2+a}\\{0}&{2+a}&{4}\end{bmatrix}$$ $$\begin{matrix}\sim\\{C_2-aC_1}\\{C_3+C_1}\end{matrix}\begin{bmatrix}{1}&{0}&{0}\\{0}&{1-a^2}&{2+a}\\{0}&{2+a}&{4}\end{bmatrix}.$$ Para … Sigue leyendo
Publicado en Álgebra
Etiquetado clasificación, criterio, cuadráticas, formas, Sylvester
Comentarios desactivados en Clasificación de formas cuadráticas
Diagonalización de formas cuadráticas por transformaciones elementales
Proporcionamos ejercicios sobre diagonalización de formas cuadráticas por transformaciones elementales. Enunciado Se considera la forma cuadrática $q:\mathbb{R}^3\to\mathbb{R}$ cuya expresión en una determinada base $B$ es: $$q(x)=x_1^2+5x_2^2+8x_3^2+4x_1x_2-6x_1x_3-8x_2x_3.$$ Diagonalizarla y como aplicación descomponerla en suma de cuadrados independientes. Se considera la forma … Sigue leyendo
Publicado en Álgebra
Etiquetado cuadráticas, diagonalización, elementales, formas, transformaciones
Comentarios desactivados en Diagonalización de formas cuadráticas por transformaciones elementales
Diagonalización de formas bilineales simétricas
Proporcionamos ejercicios sobre diagonalización de formas bilineales simétricas usando el método de las transformaciones elementales por filas y columnas. Enunciado Se considera la forma bilineal simétrica en un espacio vectorial real de dimensión $3$ cuya expresión en coordenadas en una … Sigue leyendo
Publicado en Álgebra
Etiquetado bilineales, diagonalización, formas, simétricas
Comentarios desactivados en Diagonalización de formas bilineales simétricas
Formas bilineales: cambio de base
Proporcionamos ejercicios de cambio de base asociado a las formas bilineales. Enunciado La matriz de una forma bilineal $f=E\times F\to\mathbb{K}$ en las bases $B_E=\{u_1,u_2\}$ y $B_F=\{v_1,v_2,v_3\}$ es $$A=\begin{bmatrix}{2}&{-1}&{1}\\{3}&{4}&{1}\end{bmatrix}.$$ Hallar la matriz de $f$ en las nuevas bases $$B’_E=\{u_1-u_2,u_1+u_2\},\quad B’_F=\{v_1,v_1+v_2,v_1+v_2+v_3\}.$$ La … Sigue leyendo
Publicado en Álgebra
Etiquetado base, bilineales, cambio, formas
Comentarios desactivados en Formas bilineales: cambio de base