Menú
-
Entradas recientes
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: fórmula
Fórmula integral de Cauchy y matriz exponencial
Relacionamos la fórmula integral de Cauchy con la matriz exponencial. Enunciado La fórmula integral de Cauchy se puede generalizar a matrices de la siguiente manera $$f(M)=\displaystyle\frac{1}{2\pi i}\displaystyle\int_{\gamma}f(z)(zI-M)^{-1}\;dz,$$ donde $\gamma$ es la circunferencia $|z|=r,$ $I$ es la matriz identidad y todos … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado Cauchy, exponencial, fórmula, integral, matriz
Comentarios desactivados en Fórmula integral de Cauchy y matriz exponencial
Ecuación diferencial y fórmula de Leibniz
Usamos una ecuación diferencial y la fórmula de Leibniz para calcular la dervada enésima de una función en el origen. Enunciado Dada la función $y=(\textrm{Argsh}\;x)^2,$ Demostrar que se verifica la igualdad $(1+x^2)y^{\prime\prime}+xy’=2$. Utilizando la igualdad anterior y la fórmula de … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado diferencial, ecuación, fórmula, Leibniz
Comentarios desactivados en Ecuación diferencial y fórmula de Leibniz
Fórmula de Wallis
En este problema se demuestra la fórmula de Wallis. Enunciado Sea $\;\;I_n=\displaystyle\int_0^{\pi/2}\sin^nx\;dx,\; \forall n\in \mathbb{N} .$ Establecer una relación de recurrencia entre $I_n$ e $I_{n-2}.$ Establecer una fórmula que permita calcular $I_n$ conocido $n.$ Demostrar que $\displaystyle\lim_{n \to \infty}{\dfrac{I_{2n+1}}{I_{2n}}}=1$ y … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado fórmula, Wallis
Comentarios desactivados en Fórmula de Wallis
Fórmula de Leibniz de la derivada enésima
Demostramos la fórmula de Leibniz de la derivada enésima y proprcionamos ejercicioss de aplicación. Enunciado Desarrollar la fórmula de Leibniz en el caso $n=4.$ Siendo $f(x)=\sqrt{x}\log (x+1)$ calcular $f^{(4)}(1)$ usando la fórmula de Leibniz. Siendo $f(x)=e^x\operatorname{sen}x$ calcular $f^{(4)}(\pi/2).$ Usando la … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado derivada, enésima, fórmula, Leibniz
Comentarios desactivados en Fórmula de Leibniz de la derivada enésima
Una aplicación de la fórmula de Taylor
Enunciado De una función $f:(-2,2)\to\mathbb{R}$ sabemos que admite derivadas de cualquier orden y que las derivadas se pueden acotar del siguiente modo $$|f^{(n)}(x)|\leq \displaystyle\frac{2^{n+2}n!}{3^{n+1}}\qquad( \forall{n\in\mathbb{N}},\;\forall{x\in [0,1/2]}).$$ Además conocemos que $f(0)=1$ y $f^{(n)}(0)=\displaystyle\frac{n!}{2^n}$. Calcúlese $f(1/2).$ Indicación. Puede ser útil encontrar una … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado aplicación, fórmula, Taylor
Comentarios desactivados en Una aplicación de la fórmula de Taylor