Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: Fourier
Serie de Fourier asociada a un sistema ortonormal
RESUMEN. Definimos la serie de Fourier asociada a un vector de un espacio de Hilbert con respecto de un sistema ortonormal, y demostramos que siempre converge. 1. Lema. Sea $\{x_1,x_2,x_3,\ldots\}$ un sistema ortogonal en un espacio de Hilbert $H.$ Entonces, … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado Fourier, ortonormal, serie
Comentarios desactivados en Serie de Fourier asociada a un sistema ortonormal
Serie de Laurent con parámetros
Analizamos los desarrollos de una serie de Laurent con parámetros, y lo aplicamos al calculo de un desarrollo de Fourier. Enunciado Se considera la función compleja de variable compleja: $$f(z)=\displaystyle\frac{z^2-1}{\lambda z^2+(\lambda^2+1)z+\lambda}\quad (\lambda\in \mathbb{C}).$$ 1. Hallar y clasificar sus singularidades según … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado Fourier, Laurent, parámetros, serie
Comentarios desactivados en Serie de Laurent con parámetros