Archivo de la etiqueta: función

Integral de una función escalonada

Enunciado Dado un entero positivo $p$, una función escalonada $s$ está definida en el intervalo $[0,p]$ como sigue: $s(x)=(-1)^nn$ si $n\leq x < n+1$, siendo $n=0,1,2,\ldots,p-1$ y $s(p)=0$. Sea $f(p):=\displaystyle\int_0^p s(x)dx$. ¿Para qué valores de $p$ es $|f(p)|=7$? Solución Por … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Integral de una función escalonada

Función zeta de Riemann

RESUMEN. Definimos la función zeta de Riemann en la región $\text{Re z} > 1$ Teorema Para $\text{Re }z > 1$ se define $$\zeta (z):=\sum_{n=1}^{+\infty}\frac{1}{n^z}$$ Demostrar que $\zeta$ está bien definida y es analítica. A la función $\zeta$ de la llama … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Función zeta de Riemann

Función de distribución de una variable aleatoria

RESUMEN. Definmos el concepto de función de distribución de una variable aleatoria y demostramos sus propiedades. Lema. Sea $(\Omega,\mathcal{M},p)$ un espacio probabilístico y $A_n$ una sucesión de elementos de $\mathcal{M}$. $(a)$ Si $A_n$ es creciente, es decir $A_1\subset A_2\subset A_3\subset … Sigue leyendo

Publicado en Miscelánea matemática | Etiquetado , , , | Comentarios desactivados en Función de distribución de una variable aleatoria

Variación total de una función

Proporcionamos ejercicios sobre la variación total de una función. Enunciado Sea $f:[a,b]\to \mathbb{R}$ una función de variación acotada. Para toda partición $P=\{x_0,x_1,\ldots,x_n\}$ de $[a,b]$ denotamos por $\sum (P)$ a la suma $\sum_{k=1}^n\left|\Delta f_k\right|.$ Llamamos variación total de $f$ en $[a,b]$ … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Variación total de una función

Función suave pero no analítica

Proporcionamos un ejemplo de función suave, i.e. de clase infinito, que no es analítica, i.e. que no es igual a la suma de su serie de Maclaurin. Enunciado Sea la función  $f:\mathbb{R}\to \mathbb{R}$ $$f(x)=\begin{cases}e^{-1/x}&\text{si }x>0,\\ 0&\text{si }x\le0.\end{cases}$$ Demostrar que para … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , | Comentarios desactivados en Función suave pero no analítica