Archivo de la etiqueta: funciones

Espacio prehilbertiano de las funciones continuas

RESUMEN. Demostramos el espacio de las funciones complejas en un intervalo cerrado es prehilbertiano pero no de Hilbert. Enunciado (a) Sea $P$ el espacio vectorial complejo de las funciones complejas continuas definidas en el intervalo cerrado real $[a,b].$ Es decir, … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Espacio prehilbertiano de las funciones continuas

Caracterización de límites de funciones en espacios métricos por sucesiones

RESUMEN. Demostramos el teorema de caracterización de límites de funciones en espacios métricos por sucesiones. Teorema. Sean $(X,d)$ un espacio métrico, $A\subset X$, $f:A\to X$ una función, $a$ un punto de acumulación de $A$ y $b\in X.$ Entonces, $\displaystyle\lim_{x\to a}f(x)=b\Leftrightarrow … Sigue leyendo

Publicado en Miscelánea matemática | Etiquetado , , , , | Comentarios desactivados en Caracterización de límites de funciones en espacios métricos por sucesiones