Archivo de la etiqueta: fundamental

Teorema fundamental del Álgebra

RESUMEN. Demostramos el teorema fundamental del Álgebra. Teorema fundamental del Álgebra (1) Todo polinomio $p(z)=a_nz^n+a_{n-1}z^{n-1}+\ldots a_1z+ a_0\in\mathbb{C}[z]$ con $n \ge 1$ y $a_n\ne 0$ tiene al menos una raíz compleja. (2) Corolario. Todo polinomio $p(z)=a_nz^n+a_{n-1}z^{n-1}+\ldots a_1z+ a_0\in\mathbb{C}[z]$ con $n \ge … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Teorema fundamental del Álgebra

Primera forma fundamental de una superficie

Definimos la primera forma fundamental de una superficie y estudiamos alguna de sus propiedades. Enunciado Sea $U$ un abierto de $\mathbb{R}^2$ y $S$ una superficie en $\mathbb{R}^3$ definida mediante $$\mathbf{x}:U\to \mathbb{R}^2,\quad \mathbf{x}=\mathbf{x}(u,v)=\left(x_1(u,v),\;x_2(u,v),\;x_3(u,v)\right)$$ con $\mathbf{x}\in C^1(U)$ y $$\text{rango }\begin{bmatrix}{\dfrac{\partial x_1}{\partial u}} … Sigue leyendo

Publicado en Miscelánea matemática | Etiquetado , , , | Comentarios desactivados en Primera forma fundamental de una superficie

Teorema fundamental del Cálculo

Enunciado Demostrar el teorema fundamental del Cálculo: Sea $f:[a,b]\to \mathbb{R}$ una función continua, y sea la función $$F:[a,b]\to \mathbb{R},\quad F(x)=\int_a^xf(t)\;dt.$$ Entonces, $F$ es derivable en $[a,b]$ y $F'(x)=f(x)$ para todo $x\in [a,b].$ Hallar las derivadas de las siguientes funciones:$$(a)\;F(x)=\int_1^x\log t\;dt.\quad … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Teorema fundamental del Cálculo