Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: geométrica
Distribución de Pascal o geométrica
RESUMEN. Definimos la distribución de Pascal o geométrica y hallamos su media y desviación típica. Enunciado. Sea $A$ un suceso de un experimento aleatorio y consideremos una serie de pruebas independientes de dicho experimento. Sea $P(X=k)$ la probabilidad de que … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado distribución, geométrica, Pascal
Comentarios desactivados en Distribución de Pascal o geométrica
Inversa de $A\in\mathbb{R}^{3\times 3}$ e interpretación geométrica
Enunciado Se considera la matriz $$A=\begin{bmatrix}{1}&{\;\;2}&{\;\;2}\\{2}&{-2}&{\;\;1}\\{2}&{\;\;1}&{-2}\end{bmatrix}\in\mathbb{R^{3\times 3}}.$$ 1. Hallar $A^2$ y $A^{-1}.$ 2. Interpretar geométricamente el resultado. Solución 1. Operando obtenemos $A^2=9I,$ y de $A\left(\dfrac{1}{9}A\right)=I$ deducimos que $A^{-1}=\dfrac{1}{9}A.$ 2. Llamando $B=\dfrac{1}{3}A,$ obtenemos $B^2=I,$ es decir $B^{-1}=B.$ Por otra parte $B$ es simétrica, … Sigue leyendo
Publicado en Álgebra
Etiquetado $Ainmathbb{R}^{3times 3}$, geométrica, interpretación, inversa
Comentarios desactivados en Inversa de $A\in\mathbb{R}^{3\times 3}$ e interpretación geométrica
Serie geométrica
Enunciado Analizar el carácter de las siguientes series y hallar su suma cuando sean convergentes. $1)\;\displaystyle\sum_{n=0}^{+\infty}\left(\dfrac{1}{5}\right)^n.$ $2)\;\displaystyle\sum_{n=0}^{+\infty}\left(-\dfrac{1}{5}\right)^n.$ $3)\;\displaystyle\sum_{n=0}^{+\infty}\dfrac{3^n}{2^n}.$ $4)\;\displaystyle\sum_{n=0}^{+\infty}a^2.$ $5)\; 1-2+2^2-2^3+\cdots.$ Demostrar que: $a)$ La serie geométrica $1+x+x^2+x^3+\cdots$ es convergente si, y sólo si $\left|x\right|<1.$ $b)$ Si es convergente, su … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado geométrica, serie
Comentarios desactivados en Serie geométrica
Criterios de Stolz y de las medias aritmética y geométrica
Proporcionamos ejercicios sobre los criterios de Stolz y de las medias aritmética y geométrica para hallar límites. Enunciado Calcular $L=\displaystyle\lim_{n\to +\infty}\dfrac{1^2+2^2+3^2+\cdots+n^2}{n^3}.$ Calcular $L=\displaystyle\lim_{n\to +\infty}\left(\frac{2}{n}+\frac{3}{2n}+\frac{4}{3n}+\cdots+\frac{n+1}{n^2}\right).$ Calcular $L=\displaystyle\lim_{n\to +\infty}\sqrt[n]{2\cdot\dfrac{5}{4}\cdot \dfrac{10}{9}\cdot\ldots\cdot\dfrac{n^2+1}{n^2}}.$ A partir del criterio de Stolz, demostrar el criterio de la media … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado aritmética, criterios, geométrica, media, Stolz
Comentarios desactivados en Criterios de Stolz y de las medias aritmética y geométrica