Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: grupo
Grupo de las isometrías del plano
RESUMEN. Demostramos que las isometrías tienen estructura de grupo con la operación composición. Teorema. Toda isometría $h$ del plano es función biyectiva y su inversa $h^{-1}$ también es una isometría. Demostración. Si $h(z)=\alpha z+\beta$ con $\left|\alpha\right|=1$ entonces, $$h(z_1)=h(z_2)\Rightarrow \alpha z_1+\beta=\alpha … Sigue leyendo
Publicado en Álgebra
Etiquetado grupo, isometrías
Comentarios desactivados en Grupo de las isometrías del plano
Grupo en $(-1,1)$
RESUMEN. Construimos una estructura de grupo abeliano en el intervalo $(-1,1).$ Enunciado. Sea $G=(-1,1)\subset \mathbb{R}.$ Para todo $a,b\in\mathbb{R}$ se define $$a*b=\frac{a+b}{1+ab}.$$ Demostrar que $(G,*)$ es un grupo abeliano. Solución. Interna. Para todo $a,b\in G$ tenemos que demostar que $a*b\in G.$ … Sigue leyendo
Todo grupo de orden primo es cíclico
Demostramos que todo grupo de orden primo es cíclico y como aplicación determinamos todos los grupos de órdenes $n=1,2,3,5,7.$ Teorema. Sea $G$ un grupo tal que $|G|=p$ primo. Entonces, $G$ es grupo cíclico. Demostración. Como $|G|=p\ge 2$, el grupo tiene … Sigue leyendo
Grupo de Klein y sus automorfismos
Definimos el grupo de Klein y determinamos todos sus automorfismos. Enunciado Se considera el grupo $\left(\mathbb{Z}_2\times \mathbb{Z}_2,+\right).$ Demostrar que el simétrico de cada elemento coincide con el propio elemento. Demostrar que $\left(\mathbb{Z}_2\times \mathbb{Z}_2,+\right)$ no es cíclico. Denotemos $K=\mathbb{Z}_2\times \mathbb{Z}_2,$ $e=(0,0),$ … Sigue leyendo
Publicado en Álgebra
Etiquetado automorfismos, grupo, Klein
Comentarios desactivados en Grupo de Klein y sus automorfismos
Grupo de Galois de una extensión
Definimos el grupo de Galois de una extensión y proporcionamos dos ejemplos. Enunciado Sea $L/K$ una extensión de cuerpos con $L$ subcuerpo de $\mathbb{C}.$ Se llama $K$-automorfismo de $L$ a todo automorfismo $f:L\to L$ tal que $f(x)=x$ para todo $x\in … Sigue leyendo