Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: grupos
Descomposición canónica de un homomorfismo de grupos
Proporcinamos ejercicios sobre la descomposición canónica de un homomorfismo de grupos. Enunciado Sea $f:G\to G’$ un homomorfismo entre los grupos $(G,\cdot)$ y $(G’,\cdot).$ Demostrar que: (a) $n:G\to G/\ker f,\; n(x)=x\ker f$ es epimorfismo. (b) $g:G/\ker f\to \operatorname{Im}f,\;g(x\ker f)=f(x)$ es isomorfismo. … Sigue leyendo
Publicado en Álgebra
Etiquetado canónica, descomposición, grupos, homomorfismo
Comentarios desactivados en Descomposición canónica de un homomorfismo de grupos
Clasificación de homomorfismos de grupos
Proporcionamos ejercicios sobre clasificación de homomorfismos de grupos. Enunciado Sea $f:G\to G’$ un homomorfismo de grupos. Demostrar que $f$ es monomorfismo $\Leftrightarrow$ $\ker f=\{e\},$ siendo $e$ el neutro de $G.$ Clasificar los siguientes homomorfismos: $(i)$ $f:\mathbb{R}\to \mathbb{R},$ $f(x)=ax$ ( $a\in\mathbb{R}$ … Sigue leyendo
Publicado en Álgebra
Etiquetado clasificación, grupos, homomorfismos
Comentarios desactivados en Clasificación de homomorfismos de grupos
Núcleo e imagen de un homomorfismo de grupos
Proporcionamos ejercicios sobre núcleo e imagen de un homomorfismo de grupos. Enunciado Sea $(\mathbb{R}^*,\cdot)$ el grupo multiplicativo de los números reales no nulos. Demostrar que $f:\mathbb{R}^*\to \mathbb{R}^*,\;f(x)=x^2$ es homomorfismo entre los grupos $(\mathbb{R}^*,\cdot)$ y $(\mathbb{R}^*,\cdot).$ Determinar $\ker f$ e $\operatorname{Im}f.$ … Sigue leyendo
Publicado en Álgebra
Etiquetado grupos, homomorfismo, imagen, núcleo
Comentarios desactivados en Núcleo e imagen de un homomorfismo de grupos
Homomorfismos de grupos
Proporcionamos ejercicios sobre homomorfismos de grupos. Enunciado Demostrar que la aplicación $f:\mathbb{R}\to \mathbb{R},$ $f(x)=ax$ con $a\in\mathbb{R}$ fijo es homomorfismo entre los grupos $(\mathbb{R},+)$ y $(\mathbb{R},+).$ Demostrar que la aplicación $f:\mathbb{R}\to \mathbb{R},$ $f(x)=a^x$ con $a>0$ real fijo es homomorfismo entre los … Sigue leyendo
Publicado en Álgebra
Etiquetado grupos, homomorfismos
Comentarios desactivados en Homomorfismos de grupos
Primeras propiedades de los grupos
Proporcionamos ejercicios sobre algunas propiedades de los grupos. Enunciado Sea $(G,*)$ un grupo. Demostrar que: $(i)$ El elemento neutro $e$ es único. $(ii)$ Para cada $x\in G$ su simétrico $x’$ es único. $(iii)$ Para cada $x\in G$ se verifica $(x’)’=x$ (es … Sigue leyendo
Publicado en Álgebra
Etiquetado grupos, primeras, propiedades
Comentarios desactivados en Primeras propiedades de los grupos